Invent Your Own
Computer Games
with Python

3'd Edition

By Al Sweigart

i http://inventwithpython.com

Copyright © 2008-2015 by Albert Sweigart

Some Rights Reserved. "Invent Your Own Computer Games with Python™ ("Invent with Python")
is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
License.

You are free:
To Share — to copy, distribute, display, and perform the work

@ To Remix — to make derivative works

Under the following conditions:

® Attribution — You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work).
(Visibly include the title and author’s name in any excerpts of this work.)

@ Noncommercial — You may not use this work for commercial purposes.

@ Share Alike — If you alter, transform, or build upon this work, you may distribute
the resulting work only under the same or similar license to this one.

Your fair use and other rights are in no way affected by the above. There is a human-readable
summary of the Legal Code (the full license), located here:

Book Version 3.0.1, ISBN 978-1503212305

Attribution: Treasure chest icon by Victor Escorsin, Sonar icon by Pantelis Gkavos

If you’ve downloaded this book from a torrent, it’s probably out of date. Go
to http://inventwithpython.com to download the latest version instead.

Post questions to http://invpy.com/forum

For Caro, with more love

than | ever knew | had.

iv http://inventwithpython.com

A Note to Parents and Fellow Programmers

Thank you for reading this book. My motivation for writing it came from a gap | saw in today’s
literature for kids interested in learning to program. | started programming in the BASIC
programming language with a book similar to this one.

During the course of writing this, I've realized how a modern language like Python has made
programming far easier and versatile for a new generation of programmers. Python has a gentle
learning curve while still being a serious language used by programmers professionally.

The current crop of programming books fall into two categories. First, books that didn’t teach
programming so much as “game creation software” or a dumbed-down languages to make
programming “easy” to the point that it is no longer programming. Or second, they taught
programming like a mathematics textbook: all principles and concepts with little application
given to the reader. This book takes a different approach: show the source code for games right
up front and explain programming principles from the examples.

I’ve also made this book available under the Creative Commons license, which allows you to
make copies and distribute this book (or excerpts) with my full permission, as long as attribution
to me is left intact and it is used for noncommercial purposes. (See the copyright page.) | want to
make this book a gift to a world that has given me so much.

What’s New in the 3™ Edition?

The third edition features no new content since the second edition. However, the third edition has
been streamlined to cover the same content with 20% fewer pages. Explanations have been
expanded where needed and ambiguities clarified.

Chapter 9 was split into chapters 9 and 9% to keep the chapter numbering the same.

The source code has intentionally been kept the same as the second edition to prevent confusion.
If you’ve already read the second edition, there’s no reason to read this book. However, if you are
new to programming, or introducing a friend to programming, this third edition will make the
process easier, smoother, and more fun.

Post questions to http://invpy.com/forum

DiNOSAUR CoMics

. . LATER
My Richard The Third The }/ um, APPARENTLY, programming is for folks who

Elﬂ?igﬁﬁge Ts going to be are thrilled when a computer reminds them
’ A17 T need o |rhay're m1ss1ng a hracket or semicolon? It

\\\\HAN I HEAR THAT ?gl‘s pragram must be, because they make

% that happen SO OFTEM,
. g0 it's not going well?
I CAM'T EVEM GET RICHARD
THE THIRD TO MOVE.

vou know what my game

is now? ame s
MIBELES, W1t the text

changed from
&' "Copyright
3 M1crosoft 1990"
"man, Forget
th1s

TRATILY
Frogramming's a ski11t |I Just thought it was a skill I
could pick up easily. I don't need Hey, here's a tip!
to know ever¥th1n g I don't need to
I know know the difference between friggin'
~ that! binary and B+ search trees! AlLL I

T WANT TO KNOW
- is how to

P make Richard
Sy IIT's sucky

=42k horse do
sdouble jumps, f Crawling
you know? sucks!
. You've
ot to
garn
to crawl

; = hefore you
_can run, T-Rex.

b, QWANTZ, COm

[C] 200% Rwan Morth

Who is this book for?

Programming isn’t hard. But it is hard to find learning materials that teach you to do interesting
things with programming. Other computer books go over many topics most newbie coders don’t
need. This book will teach you how to program your own computer games. You’ll learn a useful
skill and have fun games to show for it! This book is for:

Complete beginners who want to teach themselves computer programming, even if they

have no previous experience programming.
o Kids and teenagers who want to learn programming by creating games.
e Adults and teachers who wish to teach others programming.
Anyone, young or old, who wants to learn how to program by learning a professional

programming language.

Vi http://inventwithpython.com

TABLE OF CONTENTS

Chapter 1 - INStalling PYLNONocueoiiee et sttt 1
Downloading and INStalling PYtNON...........ooiiiiiiiecc e 2
SEAMTING IDLEo et et e et st e et et sae e e re e es 3
HOW 10 USE ThiS BOOKciiiiieiieicies et 4
FINAING HEIP ONIINE ..o sttt re e sr e te et e sreereenne s 5

Chapter 2 - The INteraCtive SNEI ..o 6
Some SIMpPle Math STUT........coo e 6
EValUALING EXPIESSIONSvveiiiteciiesie ettt sttt te st te e be st e st e st e et e sbeete e besaeeseesteetesrearaentens 8
Storing Values in Variablesc.ooviiiiiiieee e 9

Chapter 3 - WILING PrOQIaMS........cciviiiiieiiite et sie st ste et steste e teste e e ste s e e srestaenaesreesaennesneeneesns 14
L]0 TSP T PO TP PP PP PP 14
StriNG CONCALENALION.oiiiiiiicie et r et et e s b e e be e besre et e sbesneesrestaeneens 15
Writing Programs in IDLE’S File EQItOr.........ccccoiiiiiiiiiiiiis s 15
HEHO WOTTA! ...t 16
SAVING YOUI PrOGIAM ..ottt ettt bbb 17
Opening The Programs YOU’ VE SAVE........ccccueiiriiiiiiiieiesiese sttt 18
How the “Hello World” Program Worksccccoviiiiiiiiiiiiice e 20
VANTADIE INAIMIES ... bbbttt bbbt et ne e 22

Chapter 4 - GUESS the NUMDETeii ettt st sre e 24
Sample Run of GUESS the NUMDET ..o 24
Source Code 0f GUESS the NUMDETccoiiiiiieicieese s 25
TMPOTT STALEIMENESecvivceececctec et e bbbt b e bt et ese st se st se st enesrens 26
The random. randint () FUNCLION.ccov it s 27
0T] 1< T O TP P TP PR URTPPRO 29
BIOCKS ...ttt bbb et 29
The BOOIEAN DALA TYPE .. .eeeeieieieeieeiie ettt sttt sttt ste ettt stesbeeneeseeeseeeesreeneesaeaneenees 30

Post questions to http://invpy.com/forum

COMPAITSON OPEIALOTSc.vevveieeiieiistesie sttt se ettt e s b sttt b b b an e e e e e eneans 30

CONAITIONS ...t bbb bbb bbb bbb 31
The Difference BEtWEEN =GN0 ==ccoiiiiiiiiieieeee s 32
Looping With Whi 1@ StalemMENESccooviiiiiiieiee s 33
Converting Values with the int (), float (), and str() Functions........c.cccecevvvreerrenennen. 34
T STAEIMENES ..ttt 36
Leaving Loops Early with the break statement............ccooveiiiiiiiiiiiece s 37
FIOW CONIol StALEMENTS.cviiiieiieiiec et 39
(08 T o) (ST (o] TSP 41
Making the MoSt Of PrantT () .o e 41
SAMPIE RUN OF JOKESottt st s re e e e s be e sreeree e 41
SOUICE COUE OF JOKES ..ottt 41
o oL O g 1= Tod (=] £SO 42
Quotes and DOUDIE QUOLEScoveeiiiireiie ettt ettt ete e st sre e s e st e s beesbeesbeesbessbaeenreereens 43
print()’s end Keyword ArgUMENT.........cccoviiririririeieeieiee st es 44
Chapter 6 - Dragon REAIMc.oiiiieic it te ettt be e e be e ae s beere e resre e e e 46
FUNCLIONS. ... bbbttt e bbbt bbb ene b 46
How t0 Play Dragon REAIMc.coiiiiiiiic sttt st st st r et 46
Sample Run of Dragon REAIMooiiiiiiiiiiee et 47
Source Code of Dragon REAIMoiiiiiiiiiiee s 47
T SEAIEMENES. .. .eeveiieece ettt 48
BOO0IEAN OPEIALOISviietiie ittt bbbttt bbb 50
RETUIM VAIUES. ... 54
Global SCope and LOCAI SCOPEcouviuiitiriiiieiieieieee sttt 55
L 10 Lo T TP PP PR 56
DeSigNiNg the PrOGIamMcoeiiiieeie ettt sttt st et sreeneenbesneentesaeeeeneas 60
Chapter 7 - USINg the DEDUGGETc.viuiiiiiiiie et 62
BUGS . ettt b e bt eh e he e be b be e beeneeas 62

THE DBDUGUET ...t bbbttt bttt 63

viii http://inventwithpython.com

(<] o] o100 TSP P PO TP TR PRSPPI 65
L0 IRt TCTN = T TS 68
BIEAK POINES ...ttt b e 71
Example USiNg Break POINEScciiiiieiiieee sttt sre et 72
Chapter 8 - FIOW CRAIS......c.oeiiieiiiiii ittt 75
HOW 10 Play HaNGMANooviiiiiiicc e 75
Sample RUN OF HANGMANooiiie e sttt re e e 75
F 1O Y o S PP PR PRTUPR 77
Designing a Program With @ FIOWChArT.............ccooviiiiiieii e 77
Creating the FIOW CRarT.........ccooiiiii s 79
(@8 T T o =T oo [7=V USRS 88
Source Code OF HANGIMANc.oiiiiiiiiieiee e 88
MUIEI-TING SEINGS ...ttt te e e s b e et e et e sbeere e besreebesresneeeas 92
CONSEANT VANTADIES ... bbbt 93
[F TSP T TSP PR TP PP PRPPPRPRN 93
IMIBENOUS ...ttt bbb bbb 97
The Tower () and upper () String Methodsccceveiiiciiicecee e 98
The reverse() and append () List Methods............ccccevvrveiiiiiiiicieeieeeee e 100
The SPTAT() LiSt MENOG........ccociieiecice ettt 100
The range () and TiST () FUNCHIONS........c.cciiiiiiiiccces e 103
FOI LLOOPS ..ttt 104
] 1ot 1o SRS 106
€17 T (“EISE 1) StALEMENTS.......v.vveveiieieieieiereseeeseresee ettt es e sesese e e 109
Chapter 9 % - EXtending Hangmancccooiiiiiiiiiiseree e 117
DICTIONAITES ...ttt b r et 118
The random. choice () FUNCHIONccoieiicece e 121
MUIEIPIE ASSIGNIMENT. ...ttt sttt e st e e steseeeneeseeereeneens 122
Chapter 10 - TIC TAC TOReueeuieiieiieieitiste sttt bbbttt bbb e ene e 125
SAMPIE RUN OF TIC TAC TOB ...cuviuiiiiiiiiticte ittt ene s 125

Post questions to http://invpy.com/forum

SOUICE COUE OF THC TAC TOB ..uveeeeie ettt e ettt e e e et e ettt e e e e e re ettt eeeeesasb et eeeeesssaebrraeeeeeeses 127

DeSigNING the PrOOIaMcviiiiiieiee ettt sttt sbe e be e e sr e s re e e e sreereente s 131
GAME Al E e e nr e e 133
RETEIBICES. ...ttt 138
Short-CirCuit EVAIUALIONcviiiiiiiiiteie e 146
TRENONE VAIUE ...t 149
(@8 =T o (= g 2 = To = S SPRT 157
SAMPIE RUN OF BAGEIS. ...ttt 157
SOUrCE COde OF BAGEIS......iiiiiieiiiie ettt e sttt st et e beesre s reenee e 158
The random. ShUuffTe () FUNCON.........cooci e 161
Augmented ASSIGNMENT OPEIAIOTSc.viiriiiierieieeeiee et 163
The SO T () LISEIMEINOU ...ttt ettt ettt e e et ee et e e e e e et e e eee e st e neeneneeene 164
The JOTN () StriNG METhOU.......ciieiiiiieie e 165
SEING INTEIPOIATION ...t ere s 167
Chapter 12 - Cartesian COOIAINALESccciviieiiie e se et sreere e besre e e sbesneesnas 171
Grids and Cartesian COOMTINALES.cceiirierreieieiees et ere s 171
NEQALIVE NUIMDEISc.eeiiiicie et s re st e e sbesbeese e besaeesresbeeneesreeteeneens 173
IMEAEN THICKS .. vttt et st s e stestaesbesteese e beeneesaesreeneenenaraennens 175
Absolute Values and the @b s () FUNCLIONeeeeeeee ettt eee e aeans 177
Coordinate System of @ COMPULET SCIEEMccviiiiiiiiiie et s 178
Chapter 13 - SoNar Treasure HUNTooiiiiieieiee e 179
Sample Run of SONar Treasure HUNL ... s 180
Source Code 0f SONAr Treasure HUNTccoiiiiiiiiiiiesee e 183
DesSigNiNg the PrOQIaMooiiiiie ettt sttt e st neesaeseeeneeseeeneenneas 188
An Algorithm for Finding the Closest Treasure Chestccooiereiiiinienine e 195
The remove () List MENOMccooviiiiieie ettt st st 197
Chapter 14 - CaeSar CIPRNENc..i ittt st seeere e tesaeeeesaeeneeneas 207
CrYPLOGIAPNY ..ttt bbbttt b bbb bt 207

I LCT O Lot T O T o] T P 208

X

http://inventwithpython.com

ASCII, and Using NUMDBDEIS FOr LEMEISocveiiieeiece e 209
The chr () and O d () FUNCHONS.ooeeeeeee ettt e e s e et et e et st e st e st e nne e 210
Sample RUN OF Caesar CIPNET.........coviiiiiie et 211
Source Code Of CaeSaAr CIPNETciiiiiiiee e 212
HOW the COOE WOTKS.........ciiiiiiiiiiciit bbb 213
The isalpha() String Methodcccviieiiiiiic e 215
The isupper() and isTower () String Methods...........ccccevveeviiiviiccicee e 216
BIULE FOMCE. ...ttt 218
CRAPTET 15 - REVEIST ...ttt ettt bt n bt 222
SAMPIE RUN OF REVEISI ...ttt sttt sttt te et s reenee e 224
SOUICE COUE OF REVEISH ...ttt 227
HOW the COOE WOTKS.........cuiiiiitiiict bbbt 235
The DOOT () FUNCLION.ccieiiceeee ettt sttt s e s be et sbe e 244
Chapter 16 - Reversi Al SIMUIALION. ..o 258
Making the Computer Play Against ItSElf..........cccooiiiiiiiicce e 259
PEICEINTAGES ...ttt n et ne s 263
THe FOUNA Q) FUNCLION ...ttt ettt e e e e et e et et e et e e et e e st e eeeeeneeene 264
SamPle RUN OF ALSIMZ2.PY c.oeiiiiieece e e bbb sre s 265
Comparing Different Al AlIGOrthMS.ccoiiiiiiiii e 266
Chapter 17 - Graphics and ANIMALtiONccccveiiiiiie it 274
INSEAITING PYGAME.....ctiiiiice bbbt 274
HEHO WOrI iN PYGAME ..ottt sttt st e e sreeneenae s 275
Source Code Of HEHIO WOTI..........ocoiiiiiiic e 275
Running the Hello WOrld Program ... 277
TUPIES bbbt b bbbt h bbb et nre s 278
(€] = 3 0] o] £ SSSSTSSSN 279
Fonts, and the pygame. font.SysFont () FUNCtiONccccccevviveciiiviscceccce e 280
N L1 00T PSS 282
CONSEIUCTOT FUNCHIONS ...ttt 283

Post questions to http://invpy.com/forum

Pygame’s Drawing FUNCHONSccveiiiiiiiiieiiiesee e 283

EVents and the Game LOOPecviiiieeie ettt sttt st sre st saesraenre s 288
ANTMALION ...t b bbbt et bt bt bbb nn et b s 289
Source Code of the ANIMAtioN PrOGramcccoviviiiiiiiiie it s 289
How the Animation Program WOIKScoiiiieiiiinsese s 292
RUNNING the GAME LOOPiiviiiteieeeees st 295
Chapter 18 - Collision Detection and Keyboard/Mouse INpUL............cccccveieveieeiiie e, 300
Source Code of the Collision Detection Program............ccoceoereieieiiniinisesese e 300
The Collision Detection AIGOthM.........ccooviiiiiic s 304
Don’t Add to or Delete from a List while Iterating Over It..........cccooviviiiiniii i 309
Source Code of the Keyboard INPUt Program..........ccccoeeveiiiieie e 310
The colTiderect () MEthO.......c.cccociiieiicice e s 318
Chapter 19 - SouNdS and IMAGES.coviiriieieie e e 319
SouNd and IMAGE FIlES......coi i re e be e st reenee e 320
Sprites and SOUNTS PrOGIaMcvoiiiiiiiieieeieeei et 321
Source Code of the Sprites and SoOUNS Programccccccvieeieieciecie e 321
The pygame.transform.scale() FUNCLIONccccoceiviiicceciciccc e 325
CRAPLET 20 - DOUGET ... ettt bbbttt bbb e et 329
Review of the Basic Pygame Data TYPES ...cvciiiieiiiieiee ettt ste e sre st e 329
SOUICE COUE OF DOUGETecueeiieiieiisieste ettt nb e ene s 330
FUIISCIEEN IMIOGE. ...ttt 339
THE GAME LOOP ...ttt bbbttt b et bttt 343
EVENE HANGIING ..ottt ettt eneesee e e seeeree e 343
The MOVE_TP () MENOAc.oiviieiiicece ettt sttt naeneas 346
The pygame.mouse.set_pos () FUNCHIONcccoceiiiiiciiccccee e 349

MOodifying the DOUGEI GAMEoiiieeeie ettt ettt seeseeeneeseesreeeeas 353

Chapter 1 - Installing Python 1

Chapter 1

INSTALLING PYTHON

Topics Covered In This Chapter:

o Downloading and installing the Python interpreter
e How to use this book

o The book’s website at http://inventwithpython.com

Hello! This book teaches you how to program by making video games. Once you learn how the
games in this book work, you’ll be able to create your own games. All you’ll need is a computer,
some software called the Python interpreter, and this book. The Python interpreter is free to
download from the Internet.

When | was a kid, a book like this one taught me how to write my first programs and games. It
was fun and easy. Now as an adult, I still have fun programming and | get paid for it. But even if
you don’t become a computer programmer when you grow up, programming is a useful and fun
skill to have.

Computers are incredible machines, and learning to program them isn’t as hard as people think. If
you can read this book, you can program a computer. A computer program is a bunch of
instructions that the computer can understand, just like a storybook is a bunch of sentences
understood by the reader. Since video games are nothing but computer programs, they are also
made up of instructions.

To instruct a computer, you write a program in a language the computer understands. This book
teaches a programming language named Python. There are many different programming
languages including BASIC, Java, JavaScript, PHP, and C++.

When | was a kid, BASIC was a common first language to learn. However, new programming
languages such as Python have been invented since then. Python is even easier to learn than
BASIC! But it’s still a serious programming language used by professional programmers. Many
adults use Python in their work and when programming for fun.

The games you’ll create from this book seem simple compared to the games for Xbox,
PlayStation, or Nintendo. These games don’t have fancy graphics because they’re meant to teach
coding basics. They’re purposely simple so you can focus on learning to program. Games don’t
have to be complicated to be fun.

2 http://inventwithpython.com

Downloading and Installing Python

You’ll need to install software called the Python interpreter. The interpreter program
understands the instructions you’ll write in the Python language. Il just refer to “the Python
interpreter software” as ‘“Python” from now on.

Important Note! Be sure to install Python 3, and not Python 2. The programs in
this book use Python 3, and you’ll get errors if you try to run them with Python 2.
It is so important I’ve added a cartoon penguin in Figure 1-1 to tell you to install
Python 3 so you do not miss this message.

Be sure to
install Python 3,
not Python 2!

Figure 1-1: An incongruous penguin tells you to install Python 3.

On Windows, download the Python installer (the filename will end with .msi) and double-click it.
Follow the instructions the installer displays on the screen to install Python, as listed here:

1. Select Install for All Users and then click Next.
2. Install to the C:\Python34 folder by clicking Next.
3. Click Next to skip the Customize Python section.

On Mac OS X, download the .dmg file that’s right for your version of OS X from the website and
double-click it. Follow the instructions the installer displays on the screen to install Python, as
listed here:

1. When the DMG package opens in a new window, double-click the Python.mpkg file. You
may have to enter the administrator password.

2. Click Continue through the Welcome section and click Agree to accept the license.

Post questions to http://invpy.com/forum

Chapter 1 - Installing Python 3

3. Select HD Macintosh (or whatever name your hard drive has) and click Install.

If you’re running Ubuntu, you can install Python from the Ubuntu Software Center by following
these steps:

1. Open the Ubuntu Software Center.

2. Type Python in the search box in the top-right corner of the window.
3. Select IDLE (using Python 3.4), or whatever is the latest version.
4. Click Install. You may have to enter the administrator password to complete the
installation.
Starting IDLE

IDLE stands for Interactive DeveLopment Environment. The development environment is like
word processing software for writing Python programs. Starting IDLE is different on each
operating system.

On Windows, click the Start button in the lower left corner, type “IDLE” and select IDLE
(Python GUI).

On Mac OS X, open the Finder window and click on Applications. Then click Python 3.4. Then
click the IDLE icon.

On Ubuntu or Linux, open a terminal window and then type “idle3”. You may also be able to
click on Applications at the top of the screen. Then click Programming and IDLE 3.

The window that appears when you first run IDLE is the interactive shell, as shown in Figure 1-
2. You can enter Python instructions into the interactive shell at the >>> prompt and Python will
perform them. After displaying instruction results, a new >>> prompt will wait for your next
instruction.

Figure 1-2: The IDLE program’s interactive shell on Windows, OS X, and Ubuntu Linux.

4 http://inventwithpython.com

How to Use this Book

Most chapters in this book will begin with a sample run of the chapter’s featured program. This
sample run shows you what the program looks like when you run it. The parts the user types in
are shown as bold print.

Type the code for the program into IDLE’s file editor yourself, rather than download or
copy/paste it. You’ll remember programming better if you take the time to type in the code.

Line Numbers and Spaces

When typing the source code from this book, do not type the line numbers at the start of each
line. For example, if you see this in the book:

59. number = random.randint(1l, 20)

You do not need to type the “9.” on the left side, or the one space immediately following it. Just
type it like this:

Enumber = random.randint(l, 20)

Those numbers are there only so that this book can refer to specific lines in the program. They are
not a part of the actual program’s source code.

Aside from the line numbers, enter the code exactly as it appears. Notice that some of the lines of
code are indented by four or eight spaces. Each character in IDLE is the same width, so you can
count the number of spaces by counting the number of characters on the line above or below.

For example, the indented spaces here are marked with a = black square so you can see them:

while guesses < 10:
sannif number == 42:
-------- print('Hello")

Text Wrapping in This Book

Some instructions are too long to fit on one line on the page and will wrap around to the next line.
When you type this code, enter it all on one line without pressing ENTER. You can tell when a
new instruction starts by looking at the line numbers on the left. The example below has only two
instructions:

1. print('This is the first instruction! XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX ")

Post questions to http://invpy.com/forum

Chapter 1 - Installing Python 5

2. print('This is the second instruction, not the third instruction.')

The first instruction wraps around and makes it look like three instructions in total. That’s only
because this book’s pages aren’t wide enough to fit the first instruction on one line.

Finding Help Online

respectively.
You can also email me your programming questions at al@inventwithpython.com.

Keep in mind there are smart ways to ask programming questions that help others help you. Be
sure to read the Frequently Asked Questions sections these websites have about the proper way to
post questions. When asking programming questions, do the following:

e If you are typing out the programs in this book but getting an error, first check for typos
tool to find any differences from the book’s code in your program.

e Explain what you are trying to do when you explain the error. This will let your helper
know if you are on the wrong path entirely.

o Copy and paste the entire error message and your code.

e Search the Web to see whether someone else has already asked (and answered) your
guestion.

e Explain what you’ve already tried to do to solve your problem. This tells people you’ve
already put in some work to try to figure things out on your own.

e Be polite. Don’t demand help or pressure your helpers to respond quickly.

Asking someone, “Why isn’t my program working?” doesn’t tell them anything. Tell them what
you are trying to do, the exact error you are getting, and your operating system and version.

6 http://inventwithpython.com

Chapter 2

THE INTERACTIVE SHELL

Topics Covered In This Chapter:
Integers and Floating Point Numbers
Expressions

Values

Operators

Evaluating Expressions

Storing Values in Variables

Before you can make games, you need to learn a few basic programming concepts. You won’t
make games in this chapter, but learning these concepts is the first step to programming video
games. You’ll start by learning how to use Python’s interactive shell.

Some Simple Math Stuff

Open IDLE using the steps in Chapter 1, then get Python to solve some simple math stuff. The
interactive shell can work just like a calculator. Type 2 + 2 into the interactive shell at the >>>
prompt and press the ENTER key on your keyboard. (On some keyboards, this is the RETURN key.)
Figure 2-1 shows how the interactive shell responds with the number 4.

A Python 140 Sl =T X

| fde Edit Shell Debug Qotom Windows |

Figure 2-1: Enter 2+2 into the interactive shell.

This math problem is a simple programming instruction. The + sign tells the computer to add the
numbers 2 and 2. Table 2-1 lists the other math symbols available in Python. The - sign will
subtract numbers. The * asterisk will multiply numbers. The / slash will divide numbers.

Post questions to http://invpy.com/forum

Chapter 2 - The Interactive Shell 7

Table 2-1: The various math operators in Python.

Operator
+
- subtraction
* multiplication
/
When used in this way, +, -, *, and / are called operators. Operators tell Python what to do with

the numbers surrounding them.

Integers and Floating Point Numbers

Integers (or ints for short) are whole numbers such as 4, 99, and 0. Floating point numbers (or
floats for short) are fractions or numbers with decimal points like 3.5, 42.1 and 5.0. In Python,
the number 5 is an integer, but 5.0 is a float. These numbers are called values.

Expressions

These math problems are examples of expressions. Computers can solve millions of these
problems in seconds. Expressions are made up of values (the numbers) connected by operators
(the math signs). Try entering some of these math problems into the interactive shell, pressing the

ENTER key after each one.

2+2+42+242
8%6

10-5+6

2+ 2

After you type in the above instructions, the interactive shell will look like Figure 2-2.

D‘ Python 1449 ?m."

idit el Debug Qomons Wadows Hen

4 bit (AMDA4} | on windZ
|

!‘
NE

|

i‘

“capyrigl
5+€

Figure 2-2: What the IDLE window looks like after entering instructions.

8 http://inventwithpython.com

operator
value k value

2% 2

ey
expression

Figure 2-3: An expression is a made up of values and operators.

Inthe2 + 2 example, notice that there can be any amount of spaces between the values
and operators. However, always start instructions at the beginning of the line when entering them
into the interactive shell.

Evaluating Expressions

When a computer solves the expression 10 + 5 and gets the value 15, it has evaluated the
expression. Evaluating an expression reduces the it to a single value, just like solving a math
problem reduces the problem to a single number: the answer. The expressions 10 + 5and 10 + 3
+ 2 both evaluate to 15.

Expressions can be of any size, but they will always evaluate down to a single value. Even single
values are expressions: The expression 15 evaluates to the value 15. For example, the expression
8 * 3/ 2+ 2+ 7 - 9will evaluate down to the value 12.0 through the following steps:

8 *3 /2 +2+7 9

< |

24 / 2 + 2 + 7 9

< |

12.0 + 2 + 7

< |

14.0 + 7

< |

21.0 - 9
v

12.0

You don’t see all of these steps in the interactive shell. The interactive shell does them and just
shows you the results:

>>8 *3 /2 +2+7 -9
12.0

Post questions to http://invpy.com/forum

Chapter 2 - The Interactive Shell 9

Notice that the / division operator evaluates to a float value, as in 24 / 2 evaluating to 12.0.
Math operations with float values also evaluate to float values, as in 12.0 + 2 evaluating to 14.0.

Syntax Errors

If you enter 5 + into the interactive shell, you’ll get an error message.

>>> 5 +
SyntaxError: invalid syntax

This error happened because 5 +isn’t an expression. Expressions have values connected by
operators. But the + operator expects a value after the + sign. An error message appears when this
value is missing.

SyntaxError means Python doesn’t understand the instruction because you typed it incorrectly.
A lot of computer programming isn’t just telling the computer what to do, but also knowing how
to tell it.

Don’t worry about making mistakes though. Errors don’t damage your computer. Just retype the
instruction correctly into the interactive shell at the next >>> prompt.

Storing Values in Variables

You can save the value an expression evaluates to so you can use it later by storing them in
variables. Think of variables like a box that can hold a value.

An assignment statement instruction will store a value inside a variable. Type the name for the
variable, followed by the = sign (called the assignment operator), and then the value to store in
the variable. For example, enter spam = 15 into the interactive shell:

>>> spam = 15
>>>

The spam variable’s box will have the value 15 stored in it, as shown in Figure 2-4. The name
“spam” is the label on the box (so Python can tell variables apart) and the value is written on a
small note inside the box.

When you press ENTER you won’t see anything in response. In Python, the instruction executed
was successful if no error message appears. The >>> prompt will appear so you can type in the
next instruction.

10 http://inventwithpython.com

Figure 2-4: Variables are like boxes that can hold values in them.

Unlike expressions, statements are instructions that do not evaluate to any value. This is why
there’s no value displayed on the next line in the interactive shell after spam = 15. If you are
confused about which instructions are expressions and which are statements, remember that
expressions evaluate to a single value. Any other kind of instruction is a statement.

Variables store values, not expressions. For example, consider the expression in the statements
spam = 10 + 5and spam = 10 + 7 - 2. They both evaluate to 15. The end result is the same:
Both assignment statements store the value 15 in the variable spam.

The first time a variable is used in an assignment statement, Python will create that variable. To
check what value is in a variable, type the variable name into the interactive shell:

>>> spam = 15
>>> spam
15

The expression spam evaluates to the value inside the spam variable: 15. You can use variables in
expressions. Try entering the following in the interactive shell:

>>> spam = 15
>>> spam + 5
20

You’ve set the value of the variable spam to 15, S0 writing spam + 5 is like writing the
expression 15 + 5. Here are the steps of spam + 5 being evaluated:

spam + 5
v

15 + 5
v

20

Post questions to http://invpy.com/forum

Chapter 2 - The Interactive Shell 11

You cannot use a variable before an assignment statement creates it. Python will give you a
NameError because no such variable by that name exists yet. Mistyping the variable name also
causes this error:

>>> spam = 15
>>> spma
Traceback (most recent call last):
File "<pyshell1#8>", 1ine 1, in <module>
spma
NameError: name 'spma' is not defined

The error appeared because there’s spam variable but no variable named spma.

You can change the value stored in a variable by entering another assignment statement. For
example, try entering the following into the interactive shell:

>>> spam = 15
>>> spam + 5

20

>>> spam = 3

>>> spam + 5

8

When you first enter spam + 5, the expression evaluates to 20 because you stored 15 inside spam.
However, when you enter spam = 3, the value 15 is replaced, or overwritten, with the value 3.
Now when you enter spam + 5, the expression evaluates to 8 because the value of spam is now 3.
Overwriting is shown in Figure 2-5.

Figure 2-5: The 15 value in spam being overwritten by the 3 value.

You can even use the value in the spam variable to assign a new value to spam:

12 http://inventwithpython.com

>>> spam = 15
>>> spam = spam + 5
20

The assignment statement spam = spam + 5 is like saying, “the new value of the spam variable
will be the current value of spam plus five.” Keep increasing the value in spam by 5 several times
by entering the following into the interactive shell:

>>> spam = 15

>>> spam = spam + 5
>>> spam = spam + 5
>>> spam = spam + 5
>>> spam

30

Using More Than One Variable

Create as many variables as you need in your programs. For example, let’s assign different values
to two variables named eggs and bacon, like so:

>>> bacon = 10
>>> eggs = 15

Now the bacon variable has 10 inside it, and eggs has 15 inside it. Each variable is its own box
with its own value, like in Figure 2-6.

Figure 2-6: The “bacon” and “eggs” variables have values stored in them.

Try entering spam = bacon + eggs into the interactive shell, then check the new value of spam:

>>> bacon = 10

>>> eggs = 15
>>> spam = bacon + eggs
>>> spam

Post questions to http://invpy.com/forum

Chapter 2 - The Interactive Shell 13

| 25

The value in spam is now 25. When you added bacon and eggs you are adding their values,
which are 10 and 15, respectively. Variables contain values, not expressions. The spam variable
was assigned value 25, and not the expression bacon + eggs. After the spam = bacon + eggs
assignment statement, changing bacon or eggs does not affect spam.

Summary

In this chapter, you learned the basics about writing Python instructions. Python needs you to tell
it exactly what to do in a strict way. Computers don’t have common sense and only understand
specific instructions.

Expressions are values (such as 2 or 5) combined with operators (such as + or -). Python can
evaluate expressions, that is, reduce the expression to a single value. You can store values inside
of variables so that your program can remember them and use them later.

There are many other types of operators and values in Python. In the next chapter, you’ll go over
some more basic concepts and write your first program. You’ll learn about working with text in
expressions. Python isn’t limited to just numbers; it’s more than a calculator!

14 http://inventwithpython.com

Chapter 3

WRITING PROGRAMS

Topics Covered In This Chapter:

Flow of execution

Strings

String concatenation

Data types (such as strings or integers)
Using the file editor to write progams
Saving and running programs in IDLE
The print() function

The input () function

Comments

Case-sensitivity

That’s enough math for now. Now let’s see what Python can do with text. In this chapter, you’ll
learn how to store text in variables, combine text, and display text on the screen.

Almost all programs display text to the user, and the user enters text into your programs through
the keyboard. You’ll also make your first program in this chapter. This program displays the
greeting, “Hello World!” and asks for the user’s name.

Strings

In Python, text values are called strings. String values can be used just like integer or float values.
You can store strings in variables. In code, string values start and end with a single quote (). Try
entering this code into the interactive shell:

§>>> spam = 'hello'

The single quotes tell Python where the string begins and ends. They are not part of the string
value’s text. Now if you type spam into the interactive shell, you will see the contents of the spam
variable. Remember, Python evaluates variables to the value stored inside the variable. In this
case, this is the string 'hello":

>>> spam = 'hello’'

>>> spam
"hello'

Post questions to http://invpy.com/forum

Chapter 3 - Writing Programs 15

Strings can have any keyboard character in them and can be as long as you want. These are all
examples of strings:

'hello'

'"Hi there!’

"KITTENS'

'7 apples, 14 oranges, 3 lemons'

'Anything not pertaining to elephants is irrelephant.’
'A long time ago, in a galaxy far, far away...'
'0*&#WY%*&OCTsdYO*&gTCHhYO*&%3yc8r2"

String Concatenation

String values can combine with operators to make expressions, just like integer and float values
do. You can combine two strings with the + operator. This is string concatenation. Try entering
'"He1lo' + 'World!' into the interactive shell:

>>> 'Hello' + 'World!'
'HelTloWorld!'

The expression evaluates to a single string value, 'HelloWor1d!"'. There is no space between the
words because there was no space in either of the two concatenated strings, unlike this example:

>>> 'Hello + '"World!"
'Hello World!'

The + operator works differently on string and integer values because they are different data
types. All values have a data type. The data type of the value 'Hello" is a string. The data type of
the value 5 is an integer. The data type tells Python what operators should do when evaluating
expressions. The + operator will concatenate string values but add integer and float values.

Writing Programs in IDLE’s File Editor

Until now, you’ve been typing instructions into IDLE’s interactive shell one at a time. When you
write programs though, you type in several instructions and have them run all at once. Let’s write
your first program!

IDLE has another part called the file editor. Click on the File menu at the top of the interactive
shell window. Then select New Window. A blank window will appear for you to type your
program’s code into, like in Figure 3-1.

16 http://inventwithpython.com

r Y =ttt oy | A Yy ||
T T) [-~
= — — e
Do fot foeat n Oreon Nedoar . tielp P Lot el Detag QOpticen YWradows s
| {Zyshon 2.4.0 (v3.4.0:047734783c13, Mar 16 2014, 19:25:331 [M3C =]
| 7. 16 B4 Bit 1ADE4)) an wind2
Typs "scpyright®, ®crudits® oz "lizasau()® for more inforeetis
n riCot 4

Figure 3-1: The file editor window (left) and the interactive shell window (right).

The two windows look similar, but just remember this: The interactive shell window will have
the >>> prompt. The file editor window will not.

Hello World!

It’s traditional for programmers to make their first program display “Hello world!” on the screen.
You’ll create your own Hello World program now.

When you enter your program, don’t enter the numbers at the left side of the code. They’re there
so this book can refer to code by line number. The bottom-right corner of the file editor window
will tell you where the blinking cursor is. Figure 3-2 shows that the cursor is on line 1 and column
0.

Lr:1|Col: 0

Figure 3-2: The bottom right of the file editor window tells you what line the cursor is on.
hello.py

Enter the following text into the new file editor window. This is the program’s source code. It
contains the instructions Python will follow when the program is run.

Post questions to http://invpy.com/forum

Chapter 3 - Writing Programs 17

IMPORTANT NOTE! The programs in this book will only run on Python 3, not
Python 2. When the IDLE window starts, it will say something like “Python
3.4.2” at the top. If you have Python 2 installed, you can have Python 3 installed

hello.py
This program says hello and asks for my name.
. print('Hello world!")
. print('What is your name?')
. myName = input()
. print('It is good to meet you,

vl A W N R

+ myName)

The IDLE program will write different types of instructions with different colors. After you’re
done typing the code, the window should look like this:

= — T) |
& Python 342 heflapy - CyPymon Ik ,,“‘_— s e
fde Edit fgrmat Bun Qpoom Windows Help |

{

Figure 3-3: The file editor window will look like this after you type in the code.

Saving Your Program

Once you’ve entered your source code, save it by clicking on File » Save As. Or press Ctrl-S to
save with a keyboard shortcut. Figure 3-4 shows the Save As window that will open. Enter
hello.py in the File name text field then click Save.

18

http://inventwithpython.com

-
Fotect Paces

Cusexs

Pytoad

Narme
_pycacte _
Dils
Dot
foufoite
nclooe
(2]

\ioe
Songes
v
L)
Tty

N blanppgame oy

- fieMens

Fragarre

Savw s hpe

|Pyonen fhes "2y * ree)

- - =02

Date modifiea

Figure 3-4: Saving the program.

You should save your programs often while you type them. That way, if the computer crashes or
you accidentally exit from IDLE you won’t lose much work.

Opening The Programs You’ve Saved

To load your previously saved program, click File » Open. Choose the file in the window that
appears and click the Open button. Your saved hello.py program will open in the File Editor

window.

Now it’s time to run the program. Click File » Run » Run Module or just press F5 from the
file editor window. Your program will run in the interactive shell window.

Enter your name when the program asks for it. This will look like Figure 3-5.

& Pymon 340 Shed

fython 3.4.0
"‘f‘l, on vinl2

tv3

Pl Fair Swil Dsbug Options Windows He
A

credita®

104t

¢3cll,

Figure 3-5: The interactive shell after running hello.py.

Post questions to http://invpy.com/forum

Chapter 3 - Writing Programs 19

When you type your hame and push ENTER, the program will greet you by name.
Congratulations! You’ve written your first program and are now a computer programmer. Press
F5 again to run the program a second time and enter another name.

If you got an error, compare your code to this book’s code with the online diff tool at

the Compare button. This tool will highlight any differences between your code and the code in
this book, like in Figure 3-6.

o

Diff Tool

Boak's Bley The 8 tocd can haks vou frd types e yoasr coce by Sromieg you e Sfteonces Betven pour program et the mograms ie the bock

Sutrwd® Forem
Sabact program Cotv 900 paste vinl Code Dere

TR Lk by
bt Py
e ool MO G N by
e SO iy
N3} vy
Fantn Contarn L300, o
e sLane
targrar xy
Fte Descrara abs oy
sy
PrganeaAN b [y
PegaTIirgRe Py
Authvar's g ey
-

Abect the Mither

wrtweAndScursie py

vt MEcok Setacioe gy

While coding, if you get a NameError that looks like this:

Hello world!
What 1is your name?
Albert
Traceback (most recent call last):
File "C:/Python26/testl.py", line 4, in <module>
myName = input()
File "<string>", 1line 1, in <module>
NameError: name 'Albert' is not defined

...that means you are using Python 2, instead of Python 3. Install a version of Python 3 from

20 http://inventwithpython.com

How the “Hello World” Program Works

Each line of code is an instruction interpreted by Python. These instructions make up the
program. A computer program’s instructions are like the steps in a cookbook recipe. Each
instruction executes in order, beginning from the top of the program and going down the list of
instructions.

The step Python is at in the program is called the execution. When the program starts, the
execution is at the first instruction. After executing the instruction, the execution moves down to
the next instruction.

Let’s look at each line of code to see what it’s doing. We’ll begin with line number 1.

Comments

1. # This program says hello and asks for my name.

This instruction is a comment. Any text following a # sign (called the pound sign) is a comment.
Comments are not for Python, but for you, the programmer. Python ignores comments.
Comments are the programmer’s notes about what the code does. You can write anything in a
comment. To make it easier to read the source code, this book prints comments in a light gray-
colored text.

Programmers usually put a comment at the top of their code to give their program a title.
Functions

A function is kind of like a mini-program inside your program. Functions contain several
instructions to execute when the function is called. Python provides some built-in functions
already. Two functions, print() and input(), are described next. The great thing about
functions is that you only need to know what the function does, but not how it does it.

A function call is an instruction that tells Python to run the code inside a function. For example,
your program calls the print () function to display a string on the screen. The print() function
takes the string you type between the parentheses as input and displays the text on the screen.

To display He1lo world! on the screen, type the print function name, followed by an opening
parenthesis, followed by the 'He11o world! " string and a closing parenthesis.

The print(function

2. print('Hello world!")

Post questions to http://invpy.com/forum

Chapter 3 - Writing Programs 21

3. print('What 1is your name?')

Lines 2 and 3 are calls to the print () function. A value between the parentheses in a function
call is an argument. The argument on line 2’s print() function call is "He11o worl1d!". The
argument on line 3’s print () function call is 'What is your name?'. This is called passing the
argument to the print () function.

In this book, function names have parentheses at the end. This makes it clear that print() means
this book is talking about a function named print (), and not a variable named print. This is like
the quotes around the number '42" telling Python that you are talking about a string '42"' and not
an integer 42.

The input O function

4. myName = input()

Line 4 is an assignment statement with a variable (myName) and a function call (input()). When
input() is called, the program waits for the user to enter text. The text string that the user enters
becomes the value that the function call evaluates to. Function calls can be used in expressions
anywhere a value can be used.

The value that the function call evaluates to is called the return value. (In fact, “the value a
function call returns” means the same thing as “the value a function call evaluates t0”.) In this
case, the return value of the input () function is the string that the user typed in-their name. If the
user typed in “Albert”, the input () function call evaluates to the string 'Albert’'. The evaluation
looks like this:

myName = input()
v
myName = 'Albert'’

This is how the string value 'ATbert’ gets stored in the myName variable.

Using Expressions in Function Calls

5. print('It is good to meet you, + myName)

The last line is another print () function call. The expression 'It is good to meet you, ' +
myName in between the parentheses of print(). However, arguments are always single values.
Python will first evaluate this expression and then pass that value as the argument. If 'Albert' is
stored in myName, the evaluation looks like this:

22 http://inventwithpython.com

print('It is good to meet you,
v

print('It is good to meet you, ' + 'Albert')
v

print('It is good to meet you, Albert')

+ myName)

This is how the program greets the user by name.
Ending the Program

Once the program executes the last line, it terminates or exits. This means the program stops
running. Python forgets all of the values stored in variables, including the string stored in myName.
If you run the program again and enter a different name, the program will think that is your name.

Hello world!

What 1is your name?

Carolyn

It is good to meet you, Carolyn

Remember, the computer does exactly what you program it to do. Computers are dumb and just
follow the instructions you give it exactly. The computer doesn’t care if you type in your name,
someone else’s hame, or just something silly. Type in anything you want. The computer will treat
it the same way:

Hello world!

What is your name?

poop

It is good to meet you, poop

Variable Names

Giving variables descriptive names makes it easier to understand what a program does. Imagine if
you were moving to a new house and you labeled every moving box “Stuff”. That wouldn’t be
helpful at all!

Instead of myName, you could have called this variable abrahamLinco1n or nAmE. Python doesn’t
care. It will run the program just the same.

Variable names are case-sensitive. Case-sensitive means the same variable name in a different
case is considered a different variable. So spam, SPAM, Spam, and sPAM are four different variables
in Python. They each contain their own separate values. It’s a bad idea to have differently cased
variables in your program. Use descriptive names for your variables instead.

Post questions to http://invpy.com/forum

Chapter 3 - Writing Programs 23

Variable names are usually lowercase. If there’s more than one word in the variable name,
capitalize each word after the first. This makes your code more readable. For example, the
variable name whatIHadForBreakfastThisMorning is much easier to read than
whatihadforbreakfastthismorning. This is a convention: an optional but standard way of
doing things in Python programming.

Short variable names are better than long names: breakfast or foodThisMorning is more
readable than whatIHadForBreakfastThisMorning.

This book’s interactive shell examples use variable names like spam, eggs, ham, and bacon. This
is because the variable names in these examples don’t matter. However, this book’s programs all
use descriptive names. Your programs should use descriptive variable names too.

Summary

Once you learn about strings and functions, you can start making programs that interact with
users. This is important because text is the main way the user and the computer will communicate
with each other. The user enters text through the keyboard with the input () function. The
computer will display text on the screen with the print() function.

Strings are just values of a new data type. All values have a data type, and there are many data
types in Python. The + operator can concatenate strings.

Functions are used to carry out some complicated instruction as part of your program. Python has
many built-in functions that you’ll learn about in this book. Function calls can be used in
expressions anywhere a value is used.

The instruction in your program that Python is currently at is called the execution. In the next
chapter, you’ll learn more about making the execution move in ways other than just straight down
the program. Once you learn this, you’ll be ready to create games.

24 http://inventwithpython.com

Chapter 4

GUESS THE NUMBER

Topics Covered In This Chapter:
import statements

Modules

while statements

Conditions

Blocks

Booleans

Comparison operators

The difference between = and ==
if statements

The break keyword

The str(Qand int(Qand float() functions
The random. randint() function

In this chapter, you’re going to make a “Guess the Number” game. The computer will think of a
random number from 1 to 20, and ask you to guess it. The computer will tell you if each guess is
too high or too low. You win if you can guess the number within six tries.

This is a good game to code because it uses random numbers, loops, and input from the user in a
short program. You’ll learn how to convert values to different data types, and why you would
need to do this. Since this program is a game, we’ll call the user the player. But “user” would be
correct too.

Sample Run of Guess the Number

Here’s what the program looks like to the player when run. The text that the player types in is in
bold.

Hello! What is your name?

Albert

Well, Albert, I am thinking of a number between 1 and 20.
Take a guess.

10

Your guess is too high.

Take a guess.

2

Post questions to http://invpy.com/forum

Chapter 4 - Guess the Number 25

Your guess is too low.

Take a guess.

4

Good job, Albert! You guessed my number in 3 guesses!

Source Code of Guess the Number

Open a new file editor window by clicking on the File » New Window. In the blank window
that appears, type in the source code and save it as guess.py. Then run the program by pressing
F5. When you enter this code into the file editor, be sure to pay attention to the spacing at the
front of some of the lines. Some lines have four or eight spaces of indentation.

IMPORTANT NOTE! The programs in this book will only run on Python 3, not
Python 2. When the IDLE window starts, it will say something like “Python
3.4.2” at the top. If you have Python 2 installed, you can have Python 3 installed

guess.py

This is a guess the number game.
import random

guessesTaken = 0

print('Hello! What 1is your name?')
myName = input()

O oOoNOOUUVIDN WN PR

number = random.randint(1l, 20)
. print('Well, ' + myName + ', I am thinking of a number between 1 and 20.'")

el
N RO

. while guessesTaken < 6:

13. print('Take a guess.') # There are four spaces in front of print.
14. guess = input(Q)

15. guess int(guess)

16.

17. guessesTaken = guessesTaken + 1

18.

19. if guess < number:

20. print('Your guess is too low.') # There are eight spaces in front
of print.

21.

22. if guess > number:

26 http://inventwithpython.com

23. print('Your guess is too high.')

24.

25. if guess == number:

26. break

27.

28. if guess == number:

29. guessesTaken = str(guessesTaken)

30. print('Good job, ' + myName + '! You guessed my number in ' +
guessesTaken + ' guesses!')

31.

32. if guess != number:

33. number = str(number)

34. print('Nope. The number I was thinking of was ' + number)

import Statements

1. # This is a guess the number game.
2. import random

The first line is a comment. Remember that Python will ignore everything after the # sign. This
just reminds us what this program does.

The second line is an import statement. Remember, statements are instructions that perform
some action but don’t evaluate to a value like expressions do. You’ve already seen statements:
assignment statements store a value in a variable.

While Python includes many built-in functions, some functions exist in separate programs called
modules. You can use these functions by importing their modules into your program with an
import statement.

Line 2 imports the module named random so that the program can call random. randint (). This
function will come up with a random number for the user to guess.

4. guessesTaken = 0

Line 4 creates a new variable named guessesTaken. You’ll store the number of guesses the
player has made in this variable. Since the player hasn’t made any guesses at this point in the
program, store the integer 0 here.

6. print('Hello! What is your name?')
7. myName = input()

Post questions to http://invpy.com/forum

Chapter 4 - Guess the Number 27

Lines 6 and 7 are the same as the lines in the Hello World program that you saw in Chapter 3.
Programmers often reuse code from their other programs to save themselves work.

Line 6 is a function call to the print () function. Remember that a function is like a mini-
program inside your program. When your program calls a function, it runs this mini-program.
The code inside the print () function displays the string argument you passed it on the screen.

Line 7 lets the user type in their name and stores it in the myName variable. (Remember, the string
might not really be the player’s name. It’s just whatever string the player typed. Computers are
dumb and just follow their instructions no matter what.)

The random. randi ntQ Function

9. number = random.randint(1l, 20)

Line 9 calls a new function named randint () and stores the return value in number. Remember,
function calls can be part of expressions because they evaluate to a value.

The randint() function is provided by the random module, so you must precede it with random.
(don’t forget the period!) to tell Python that the function randint() is in the random module.

The randint() function will return a random integer between (and including) the two integer
arguments you pass to it. Line 9 passes 1 and 20 between the parentheses separated by commas
that follow the function name. The random integer that randint () returns is stored in a variable
named number; this is the secret number the player is trying to guess.

Just for a moment, go back to the interactive shell and enter import random to import the random
module. Then enter random. randint(1, 20) to see what the function call evaluates to. It will
return an integer between 1 and 20. Repeat the code again and the function call will return a
different integer. The randint () function returns random integer each time, just as rolling dice
you’ll get a random number each time:

>>> import random

>>> random.randint(1l, 20)
12

>>> random.randint(1l, 20)
18

>>> random.randint(1l, 20)
3

>>> random.randint(1l, 20)
18

>>> random.randint(1l, 20)
7

28 http://inventwithpython.com

Use the randint () function when you want to add randomness to your games. You’ll use
randomness in many games. (Think of how many board games use dice.)

You can also try different ranges of numbers by changing the arguments. For example, enter
random.randint(1, 4) toonly get integers between 1 and 4 (including both 1 and 4). Or try
random. randint (1000, 2000) to get integers between 1000 and 2000.

For example, enter the following into the interactive shell. The results you get when you call the
random. randint() function will probably be different (it is random, after all).

>>> random.randint(1l, 4)

3

>>> random.randint (1000, 2000)
1294

You can change the game’s code slightly to make the game behave differently. Try changing line
9 and 10 from this:

9. number = random.randint(l, 20)
10. print('wWell, " + name + ', I am thinking of a number between 1 and 20.')

...into these lines:

9. number = random.randint(l, 100)
10. print('Well, ' + name + ', I am thinking of a number between 1 and 100.')

And now the computer will think of an integer between 1 and 100 instead of 1 and 20. Changing
line 9 will change the range of the random number, but remember to change line 10 so that the
game also tells the player the new range instead of the old one.

Welcoming the Player

10. print('wWell, ' + myName + ', I am thinking of a number between 1 and 20.')

On line 10 the print () function welcomes the player by name, and tells them that the computer
is thinking of a random number.

It may look like there’s more than one string argument in line 10, but look at the line carefully.
The plus signs concatenate the three strings to evaluate down to one string. And that one string is
the argument passed to the print() function. If you look closely, you’ll see that the commas are
inside the quotes and part of the strings themselves.

Post questions to http://invpy.com/forum

Chapter 4 - Guess the Number 29

Loops

12. while guessesTaken < 6:

Line 12 is a whi1e statement, which indicates the beginning of a while loop. Loops let you
execute code over and over again. However, you need to learn a few other concepts first before
learning about loops. Those concepts are blocks, Booleans, comparison operators, conditions, and
the whiTe statement.

Blocks

Several lines of code can be grouped together in a block. Every line in a block of code has the
same minimum amount of indentation. You can tell where a block begins and ends by looking at
the number of spaces at the front of the lines. This is the line’s indentation.

A block begins when a line’s indentation increases (usually by four spaces). Any following line
also indented by four spaces is part of the block. The block ends when there’s a line of code with
the same indentation before the block started. This means blocks can exist within other blocks.
Figure 4-1 is a diagram of code with the blocks outlined and numbered.

In Figure 4-1, line 12 has no indentation and isn’t inside any block. Line 13 has an indentation of
four spaces. Since this indentation is larger than the previous line’s indentation, a new block has
started. This block is labeled (1) in Figure 4-1. This block will continue until a line with zero
spaces (the original indentation before the block began). Blank lines are ignored.

Line 20 has an indentation of eight spaces. Eight spaces is more than four spaces, which starts a
new block. This block is labeled (2) in Figure 4-1. This block is inside of another block.

12, while guessesTaken < 6 @
13, sssaprint('Take a guess.')

14, sereeguess = inputl)

15. s==s=guess = int{guess)

16.

17. seseguessesTaken = guessesTaken + 1
18,

19, ss«eeif guess < number:

0. sssssuss printi'Your guess is too low.')
21.

22, weweif guess > number:
23, sssdenas print("Your guess is too high.')

OO

Figure 4-1: Blocks and their indentation. The black dots represent spaces.

30 http://inventwithpython.com

Line 22 has only four spaces. Because the indentation has decreased, you know that block has
ended. Line 20 is the only line in that block. Line 22 is in the same block as the other lines with
four spaces.

Line 23 increases the indentation to eight spaces, so again a new block has started. It is labeled
(3) in Figure 4-1.

To recap, line 12 isn’t in any block. Lines 13 to 23 all in one block marked (1). Line 20 is in a
block in a block marked as (2). Line 23 is the only line in another block in a block marked as (3).

The Boolean Data Type

The Boolean data type has only two values: True or False. These values must be typed with a
capital “T”” and “F”. The rest of the value’s name must be in lowercase. You will use Boolean
values (called bools for short) with comparison operators to form conditions. (Conditions are
explained later.)

For example, try storing the Boolean values in variables:

True
False

>>> spam
>>> eggs

The data types that have been introduced so far are integers, floats, strings, and now bools. Every
value in Python belongs to one data type.

Comparison Operators

Line 12 has a whi1e statement:

12. while guessesTaken < 6:

The expression that follows the while keyword (the guessesTaken < 6 part) contains two values
(the value in the variable guessesTaken, and the integer value 6) connected by an operator (the <
“less than” sign). The < sign is a comparison operator.

Comparison operators compare two values and evaluate to a True or False Boolean value. A list
of all the comparison operators is in Table 4-1.

Post questions to http://invpy.com/forum

Chapter 4 - Guess the Number 31

Table 4-1: Comparison operators.

Operator Sign Operator Name
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
I= Not equal to

You’ve already read about the +, -, *, and / math operators. Like any operator, the comparison
operators combine with values to form expressions such as guessesTaken < 6.

Conditions

A condition is an expression that combines two values with a comparison operator (such as < or
>) and evaluates to a Boolean value. A condition is just another name for an expression that
evaluates to True or False. Conditions are used in whiTe statements (and a few other
instructions, explained later.)

For example, the condition guessesTaken < 6 asks, “is the value stored in guessesTaken less
than the number 6?” If so, then the condition evaluates to True. If not, the condition evaluates to
False.

In the case of the “Guess the Number” program, on line 4 you stored the value 0 in
guessesTaken. Because 0 is less than 6, this condition evaluates to the Boolean value of True.
The evaluation would look like this:

guessesTaken < 6
v

0 <6
v

True

Experiment with Booleans, Comparison Operators, and Conditions

Enter the following expressions in the interactive shell to see their Boolean results:

>> 0 < 6
True

>>> 6 < 0
False

>>> 50 < 10

32 http://inventwithpython.com

False
>>> 10 < 11
True
>>> 10 < 10
False

The condition 0 < 6 returns the Boolean value True because the number 0 is less than the
number 6. But because 6 isn’t less than 0, the condition 6 < 0 evaluates to False. 50 isn’t less
than 10, S0 50 < 10 is False. 10 is less than 11, s0 10 < 11 s True.

Notice that 10 < 10 evaluates to False because the number 10 isn’t smaller than the number 10.
They are the same size. If Alice were the same height as Bob, you wouldn't say that Alice is taller
than Bob or that Alice is shorter than Bob. Both of those statements would be false.

Now try entering these expressions into the interactive shell:

>>> 10 == 10

True

>>> 10 == 11

False

>>> 11 == 10

False

>>> 10 != 10

False

>>> 10 = 11

True

>>> 'Hello' == 'Hello'
True

>>> 'Hello' == 'Goodbye'
False

>>> 'Hello' == 'HELLO'
False

>>> 'Goodbye' != 'Hello'
True

The Difference Between - and --

Try not to confuse the assignment operator (=) and the “equal to” comparison operator (==). The
equal sign (=) is used in assignment statements to store a value to a variable, while the equal-
equal sign (==) is used in expressions to see whether two values are equal. It’s easy to
accidentally use one when you meant to use the other.

Just remember that the “equal to” comparison operator (==) has two characters in it, just as the
“not equal to” comparison operator (!=) has two characters in it.

Post questions to http://invpy.com/forum

Chapter 4 - Guess the Number 33

String and integer values will never be equal to each other. For example, try entering the
following into the interactive shell:

>>> 42 == 'Hello'
False

>>> 42 1= "42"
True

Looping with white statements

The while statement marks the beginning of a loop. Loops can execute the same code repeatedly.
When the execution reaches a while statement, it evaluates the condition next to the while
keyword. If the condition evaluates to True, the execution moves inside the following block,
called the while-block. (In the program, the while-block begins on line 13.) If the condition
evaluates to False, the execution moves all the way past the while-block. In Guess the Number,
the first line after the while-block is line 28.

A while statement always has a : colon after the condition. Statements that end with a colon
expect a new block on the next line.

12. while guessesTaken < 6:

if Fualse... it True..
= s
12. while guessesTaken < 6:
13. print('Take a guess.')
14. guess = input() g ¢ 4 .
15. guess = int(guess) o insidle +he
16. IOCF block +0 here
17. guessesTaken = guessesTaken + 1
18.
19. if guess < number:
20. print{'Your guess is too low.')
21.
22. if guess > number:
23. print(‘Your guess is too high.')
24.
25. if quess == number:
26. break
27.
28. if guess == number:

n." past te lo0p block +0 heré

Figure 4-2: The while loop’s condition.

Figure 4-2 shows how the execution flows depending on the condition. If the condition evaluates
to True (which it does the first time, because the value of guessesTaken is 0), execution will

34 http://inventwithpython.com

enter the while-block at line 13 and keep going down. Once the program reaches the end of the
while-block, instead of going down to the next line, the execution loops back up to the while
statement’s line (line 12) and re-evaluates the condition. As before, if the condition is True the
execution enters the while-block again. Each time the execution goes through the loop is called an
iteration.

This is how the loop works. As long as the condition is True, the program keeps executing the
code inside the while-block repeatedly until the first time the condition is False. Think of the
whiTe statement as saying, “while this condition is true, keep executing the code in the following
block”.

The Player Guesses

13. print('Take a guess.') # There are four spaces in front of print.
14, guess = input(Q)

Lines 13 to 17 ask the player to guess what the secret number is and lets them enter their guess.
That number is stored in a variable named guess.

Converting Values with the int0, fl0at0, str0, and boo10 Functions

15. guess = int(guess)

Line 15 calls a new function named int(). The int() function takes one argument and returns
an integer value form of that argument. Try entering the following into the interactive shell:

>>> int('42")

42

>>> 3 + int('2")
5

The int('42") call will return the integer value 42. However, even though you can pass a string
to the int () function, you cannot pass just any string. Passing ' forty-two' to int() will result
in an error. The string you pass to int() must be made up of numbers:

>>> int('forty-two')
Traceback (most recent call Tast):
File "<pyshell#5>", 1ine 1, in <module>
int('forty-two')
ValueError: invalid Titeral for int() with base 10: 'forty-two'

Post questions to http://invpy.com/forum

Chapter 4 - Guess the Number 35

The 3 + int('2") line shows an expression that uses the return value of int() as part of an
expression. It evaluates to the integer value 5:

3 +1int('2")
v

3 +2
v

5

Remember, the input () function always returns a string of text the player typed. If the player
types 5, the input () function will return the string value '5"', not the integer value 5. Python
cannot use the < and > comparison operators to compare a string and an integer value:

>> 4 < '5!
Traceback (most recent call last):
File "<pyshel1#0>", 1ine 1, in <module>
4 < 'S5
TypeError: unorderable types: int() < strQ)

14. guess
15. guess

input(Q)
int(guess)

On line 14 the guess variable originally held the string value of what the player typed. Line 15

overwrites the string value in guess with the integer value returned by int (). This lets the code
later in the program compare if guess is greater than, less than, or equal to the secret number in
the number variable.

One last thing: Calling int(guess) doesn’t change the value in the guess variable. The code
int(guess) is an expression that evaluates to the integer value form of the string stored in the
guess variable. What changes guess is the assignment statement: guess = int(guess)

The float(), str(), and boo1() functions will similarly return float, string, and Boolean
versions of the arguments passed to them. Try entering the following into the interactive shell:

>>> float('42")
42.0

>>> float(42)
42.0

>>> str(42)
l42|

>>> str(42.0)
'42.0'

>>> str(False)
'False’

>>> bool('")

36 http://inventwithpython.com

False
>>> bool('any nonempty string')
True

Using the int (), float(), str(), and boo1() functions, you can take a value of one data type
and return it as a value of a different data type.

Incrementing Variables

17. guessesTaken = guessesTaken + 1

Once the player has taken a guess, the number of guesses should be increased by one.

On the first iteration of the loop, guessesTaken has the value of 0. Python will take this value
and add 1toit. 0 + 1 evaluates to 1, which is stored as the new value of guessesTaken. Think of
line 17 as meaning, “the guessesTaken variable should be one more than what it already is”.

Adding one to a variable’s integer or float value is called incrementing the variable. Subtracting
one from a variable’s integer or float value is called decrementing the variable.

if statements

19. if guess < number:
20. print('Your guess is too low.') # There are eight spaces in front
of print.

Line 19 is an 1 f statement. The execution will run the code in the following block if the i f
statement’s condition evaluates to True. If the condition is False, then the code in the if-block is
skipped. Using 1 f statements, you can make the program only run certain code when you want it
to.

Line 19 checks if the player’s guess is less than the computer’s secret number. If so, then the
execution moves inside the if-block on line 20 and prints a message telling the player this.

The 7 f statement works almost the same as a whi1e statement, too. But unlike the while-block,
the execution doesn’t jump back to the i f statement at the end of the if-block. It just continues
down to the next line. In other words, 1 f statements don’t loop. See Figure 4-3 for a comparison
of the two statements.

Post questions to http://invpy.com/forum

Chapter 4 - Guess the Number 37

fizzy < 10:

L1) '
if condition (doesn’t loop)

keyword

fizzy > 6:
| ! |

while condition (IOOPS)
keyword

Figure 4-3: if and while statements.

22. if guess > number:
23. print('Your guess is too high.')

Line 22 checks if the player’s guess is greater than the secret number. If this condition is True,
then the print () function call tells the player that their guess is too high.

Leaving Loops Early with the break statement

25. if guess == number:
26. break

The 1 f statement on line 25 checks if the guess is equal to the secret number. If it is, the program
runs the break statement on line 26.

A break statement tells the execution to jump immediately out of the while-block to the first line
after the end of the while-block. The break statement doesn’t bother rechecking the while loop’s
condition.

The break statement is only found inside loops, such as in a while-block.

If the player’s guess isn’t equal to the secret number, the execution reaches the bottom of the
while-block. This means the execution will loop back to the top and recheck the condition on line
12 (guessesTaken < 6). Remember after the guessesTaken = guessesTaken + 1 instruction
executed, the new value of guessesTaken is 1. Because 1 < 6 is True, the execution enters the
loop again.

If the player keeps guessing too low or too high, the value of guessesTaken will change to 2,
then 3, then 4, then 5, then 6. When guessesTaken has the number 6 stored in it, the while

38 http://inventwithpython.com

statement’s condition (guessesTaken < 6) iS False, since 6 isn’t less than 6. Because the while
statement’s condition is False, the execution moves to the first line after the while-block, line 28.

Check if the Player Won

28. if guess == number:

Line 28 has no indentation, which means the while-block has ended and this is the first line after
the while-block. The execution left the while-block either because the while statement’s
condition was False (when the player runs out of guesses) or the break statement on line 26 was
executed (when the player guesses the number correctly).

Line 28 checks to see if the player guessed correctly. If so, the execution enters the if-block at
line 29.

29. guessesTaken = str(guessesTaken)
30. print('Good job, ' + myName + '! You guessed my number in ' +
guessesTaken + ' guesses!')

Lines 29 and 30 only execute if the condition in the i f statement on line 28 was True (that is, if
the player correctly guessed the computer’s number).

Line 29 calls the str() function, which returns the string form of guessesTaken. Line 30
concatenates strings to tell the player they have won and how many guesses it took them. Only
string values can concatenate to other strings. This is why line 29 had to change guessesTaken to
the string form. Otherwise, trying to concatenate a string to an integer would cause Python to
display an error.

Check if the Player Lost

32. if guess != number:

Line 32 uses the “not equal to” comparison operator != to check if player’s last guess is not equal
to the secret number. If this condition evaluates to True, the execution moves into the if-block on
line 33.

Lines 33 and 34 are inside the if-block, and only execute if the condition on line 32 was True.

33. number = str(number)
34. print('Nope. The number I was thinking of was

+ number)

Post questions to http://invpy.com/forum

Chapter 4 - Guess the Number 39

In this block, the program tells the player what the secret number they failed to guess correctly
was. This requires concatenating strings, but number stores an integer value. Line 33 will
overwrite number with a string form so that it can be concatenated to the 'Nope. The number I
was thinking of was ' string on line 34.

At this point, the execution has reached the end of the code, and the program terminates.
Congratulations! You’ve just programmed your first real game!

You can change the game’s difficulty by changing the number of guesses the player gets. To give
the player only four guesses, change the code on line 12:

12. while guessesTaken < 6:

into this line:

12. while guessesTaken < 4:

Code later in the while-block increases the guessesTaken variable by 1 on each iteration. By
setting the condition to guessesTaken < 4, you ensure that the code inside the loop only runs
four times instead of six. This makes the game much more difficult. To make the game easier, set
the condition to guessesTaken < 8 Or guessesTaken < 10. This will cause the loop to run a few
more times and accept more guesses from the player.

Flow Control Statements

In previous chapters, the program execution started at the top instruction in program and went
straight down, executing each instruction in order. But with the while, if, e1se, and break
statements, you can cause the execution to loop and skip instructions based on conditions. The
name for these kinds of statements is flow control statement, since they change the “flow” of the
program execution as it moves around your program.

Summary

If someone asked you, “What exactly is programming anyway?” what could you say to them?
Programming is just the action of writing code for programs, that is, creating programs that can
be executed by a computer.

“But what exactly is a program?” When you see someone using a computer program (for
example, playing your “Guess the Number” game), all you see is some text appearing on the
screen. The program decides what exact text to show on the screen (the program’s output), based

40 http://inventwithpython.com

on its instructions and on the text that the player typed on the keyboard (the program’s input). A
program is just a collection of instructions that act on the user’s input.

“What kind of instructions?” There are only a few different kinds of instructions, really.

1. Expressions are values connected by operators. Expressions are all evaluated down to a

single value, as 2 + 2 evaluatesto 4 or 'Hello' + ' ' + 'World' evaluates to 'Hello
World'. When expressions are next to the if and whi1e keywords, you can also call them
conditions.

2. Assignment statements store values in variables so you can remember the values later in
the program.

3. Theif,while, and break statements are flow control statements that can cause the
execution to skip instructions, loop over instructions, or break out of loops. Function calls
also change the flow of execution by jumping to the instructions inside of a function.

4. Theprint() and input() functions. These functions display text on the screen and get
text from the keyboard. This is called 1/O (pronounced like the letters, “eye-oh”), because
it deals with the Input and Output of the program.

And that’s it, just those four things. Of course, there are many details about those four types of
instructions. In this book you’ll learn about new data types and operators, new flow control
statements, and many other functions that come with Python. There are also different types of 1/O
such as input from the mouse or outputting sound and graphics instead of just text.

For the person using your programs, they only care about that last type, I/0. The user types on the
keyboard and then sees things on the screen or hears things from the speakers. But for the
computer to figure out what sights to show and what sounds to play, it needs a program, and
programs are just a bunch of instructions that you, the programmer, have written.

Post questions to http://invpy.com/forum

Chapter 5 - Jokes 41

Chapter 5

JOKES

Topics Covered In This Chapter:

e Escape characters

e Using single quotes and double quotes for strings

e Using print()’s end keyword argument to skip newlines

Making the Most of print0O

Most of the games in this book will have simple text for input and output. The input is typed by
the user on the keyboard. The output is the text displayed on the screen. In Python, the print()
function displays textual output on the screen. But there’s more to learn about how strings and
print() work in Python.

This chapter’s program tells a few different jokes to the user, and demonstrates advanced string
and print() code.

Sample Run of Jokes

What do you get when you cross a snowman with a vampire?
Frostbite!

What do dentists call an astronaut's cavity?

A black hole!

Knock knock.

Who's there?

Interrupting cow.

Interrupting cow wh-MOO!

Source Code of Jokes

Open a new file editor window by clicking on the File » New Window. In the blank window
that appears type in the source code and save it as jokes.py. Then run the program by pressing F5.

IMPORTANT NOTE! The programs in this book will only run on Python 3, not
Python 2. When the IDLE window starts, it will say something like “Python
3.4.2” at the top. If you have Python 2 installed, you can have Python 3 installed

42

http://inventwithpython.com

If you get errors after typing this code in, compare the code you typed to the book’s code with the

=
o

11.
12.
13.
14.
15.
16.

O oo NOUUVIDAS WN

jokes.py
print('What do you get when you cross a snowman with a vampire?')
input()
print('Frostbite!")

print()
print('What do dentists call a astronaut\'s cavity?')
input()
print('A black hole!")
print(Q)
print('Knock knock.")

. dinputQ
print("Who's there?")
input()
print('Interrupting cow."')
input()

print('Interrupting cow wh', end="")
print('-M00!")

How the Code Works

AW N R

print('What do you get when you cross a snowman with a vampire?')
input()
print('Frostbite!")

. printQ

Lines 1 to 4 have three print () function calls. You don’t want the player to immediately read the
joke’s punch line, so there’s a call to the input () function after the first print (). The player can
read the joke, press ENTER, and then read the punch line.

The user can still type in a string and hit ENTER, but this returned string isn’t being stored in any
variable. The program will just forget about it and move to the next line of code.

The last print () function call has no string argument. This tells the program to just print a blank
line. Blank lines are useful to keep the text from being bunched up.

Escape Characters

5.
6.
7.

print('What do dentists call a astronaut\'s cavity?')
input()
print('A black hole!")

Post questions to http://invpy.com/forum

Chapter 5 - Jokes 43

8. printQ)

On line 5, there’s a backslash right before the single quote: \'. Note that \ is a backslash, and / is
a forward slash. This backslash tells you that the letter right after it is an escape character. An
escape character lets you print characters that are hard to enter into the source code. On line 5
the escape character is the single quote.

The single quote escape character is there because otherwise Python would think the quote meant
the end of the string. But this quote needs to be a part of the string. The escaped single quote tells
Python that the single quote is literally a part of the string rather than marking the end of the
string value.

Some Other Escape Characters

What if you really want to display a backslash? This instruction would not work:

>>> print('They flew away in a green\teal helicopter.')
They flew away in a green eal helicopter.

This is because the “t” in “teal” was seen as an escape character since it came after a backslash.
The escape character t simulates pushing the Tab key on your keyboard. Instead, try this line:

>>> print('They flew away in a green\\teal helicopter."')
They flew away in a green\teal helicopter.

Table 5-1 is a list of escape characters in Python.

Table 5-1: Escape Characters

Escape Character What Is Actually Printed
A\ Backslash (\)
\' Single quote (')
\" Double quote (")
\n Newline
\t Tab

Quotes and Double Quotes

Strings don’t always have to be between single quotes in Python. You can also put them between
double quotes. These two lines print the same thing:

>>> print('Hello world')
HeTllo world

44 nhttp://inventwithpython.com

>>> print("Hello world")
Hello world

But you cannot mix quotes. This line will give you an error if you try to use them:

>>> print('Hello world")
SyntaxError: EOL while scanning single-quoted string

I like to use single quotes so I don’t have to hold down the shift key to type them. It’s easier to
type, and Python doesn’t care either way.

Just like you need the escape character \' to have a single quote in a string surrounded by single
guotes, you need the escape character \" to have a double quote in a string surrounded by double
guotes. For example, look at these two lines:

>>> print('I asked to borrow Abe\'s car for a week. He said, "Sure."'")
I asked to borrow Abe's car for a week. He said, "Sure."

>>> print("She said, \"I can’t believe you let them borrow your car.\"")
She said, "I can’t believe you let them borrow your car."

In the single quote strings you don’t need to escape double quotes, and in the double quote strings
you don’t need to escape single quotes: "astronaut's". The Python interpreter is smart enough
to know that if a string starts with one type of quote, the other type of quote doesn’t mean the
string is ending.

print(O’S end Keyword Argument

9. print('Knock knock."')

10. inputQ

11. print("Who's there?")

12. inputQ

13. print('Interrupting cow."')

14. [dinput(Q

15. print('Interrupting cow wh', end="'")
16. print('-MOO!")

Did you notice the second parameter on line 15's print()? Normally, print () adds a newline
character to the end of the string it prints. This is why a blank print () function will just print a
newline. But the print () function can optionally have a second parameter (which has the name
end.)

Post questions to http://invpy.com/forum

Chapter 5 - Jokes 45

The blank string passed is called a keyword argument. The end parameter has a specific name,
and to pass a keyword argument to this specific parameter you must type end= before it.

By passing a blank string for end, the print () function won’t add a newline at the end of the
string, but instead add a blank string. This is why '-M00! ' appears next to the previous line,
instead of on its own new line. There was no newline after the 'Interrupting cow wh' string
was printed.

Summary

This chapter explores the different ways you can use the print() function. Escape characters are
used for characters that are difficult or impossible to type into the code with the keyboard. Escape
characters are typed into strings beginning with a backslash \ followed by a single letter for the
escape character. For example, \n would be a newline. To include a backslash in a string, you
would use the escape character \\.

The print () function automatically appends a newline character to the end of the string passed it
to be displayed on the screen. Most of the time, this is a helpful shortcut. But sometimes you
don’t want a newline character at the end. To change this, you can pass the end keyword
argument with a blank string. For example, to print “spam” to the screen without a newline
character, you would call print('spam', end="").

Python provides many flexible ways to display text on the screen.

46 http://inventwithpython.com

Chapter 6

DRAGON REALM

Topics Covered In This Chapter:

The time.sTeep() function

Creating your own functions with the def keyword
The return keyword

The and, or, and not Boolean operators

Truth tables

Global and local variable scope

Parameters and Arguments

Flow charts

Functions

You’ve already used a few functions: print(), input(), random.randint(), str(, and int(Q).
You’ve called these functions to execute the code inside them. In this chapter, you’ll write your
own functions for your programs to call. A function is like a mini-program inside a program.

Functions let you run the same code multiple times without duplicating the source code several
times. Instead, you can put that code inside a function and call the function several times. This
has the added benefit that if the function’s code has a mistake, you only have one place in the
program to change it.

The game you will create in this chapter is called “Dragon Realm”. The player decides between
two caves which hold either treasure or certain doom.

How to Play Dragon Realm

In this game, the player is in a land full of dragons. The dragons all live in caves with their large
piles of collected treasure. Some dragons are friendly and share their treasure with you. Other
dragons are hungry and eat anyone who enters their cave. The player is in front of two caves, one
with a friendly dragon and the other with a hungry dragon. The player must choose between the
two.

Open a new file editor window by clicking on the File » New Window. In the blank window
that appears type in the source code and save it as dragon.py. Then run the program by pressing
F5.

Post questions to http://invpy.com/forum

Chapter 6 - Dragon Realm 47

Sample Run of Dragon Realm

You are in a Tland full of dragons. In front of you,
you see two caves. In one cave, the dragon is friendly
and will share his treasure with you. The other dragon
is greedy and hungry, and will eat you on sight.

Which cave will you go into? (1 or 2)

1

You approach the cave...

It is dark and spooky...

A large dragon jumps out in front of you! He opens his jaws and...
Gobbles you down in one bite!

Do you want to play again? (yes or no)

no

Source Code of Dragon Realm

IMPORTANT NOTE! The programs in this book will only run on Python 3, not
Python 2. When the IDLE window starts, it will say something like “Python
3.4.2” at the top. If you have Python 2 installed, you can have Python 3 installed

dragon.py
1. import random
2. import time
3.
4. def displayIntro(Q):
5. print('You are in a land full of dragons. In front of you,')
6. print('you see two caves. In one cave, the dragon is friendly')
7. print('and will share his treasure with you. The other dragon')
8. print('is greedy and hungry, and will eat you on sight.')
9. print()
10.
11. def chooseCave():
12. cave = "'
13. while cave != '1l' and cave != '2':
14. print('Which cave will you go into? (1 or 2)'")
15. cave = input(Q)
16.
17. return cave

=
(0]

48 http://inventwithpython.com

19. def checkCave(chosenCave):

20. print('You approach the cave...')

21. time.sleep(2)

22. print('It is dark and spooky...')

23. time.sleep(2)

24 . print('A large dragon jumps out in front of you! He opens his jaws
and...")

25. print()

26. time.sleep(2)

27.

28. friendlyCave = random.randint(l, 2)

29.

30. if chosenCave == str(friendlyCave):

31. print('Gives you his treasure!')

32. else:

33. print('Gobbles you down in one bite!")
34.

35. playAgain = 'yes'

36. while playAgain == 'yes' or playAgain == 'y':
37.

38. displayIntro()

39.

40. caveNumber = chooseCave()

41.

42. checkCave (caveNumber)

43.

44 . print('Do you want to play again? (yes or no)')
45, playAgain = input()

How the Code Works

Let’s look at the source code in more detail.

1. dimport random
2. import time

This program imports two modules. The random module will provide the random. randint()
function like it did in the “Guess the Number” game. You will also want time-related functions
that the time module includes, so line 2 imports the time module.

def Statements

4. def displayIntro(Q):
5. print('You are in a land full of dragons. In front of you,')

Post questions to http://invpy.com/forum

Chapter 6 - Dragon Realm 49

print('you see two caves. In one cave, the dragon is friendly')
print('and will share his treasure with you. The other dragon')
print('is greedy and hungry, and will eat you on sight.')
print()

O 00 N O

Line 4 is a def statement. The def statement defines a new function that you can call later in the
program. When you define this function, you specify the instructions in its def-block. When you
call this function, the code inside the def-block executes.

Figure 6-1 shows the parts of a def statement. It has the def keyword followed by a function
name with parentheses and then a colon (the : sign). The block after the def statement is called
the def-block.

def keyword parentheses

J

chooseCave () :

function name colon

Figure 6-1: Parts of a def statement.

Remember, the def statement doesn’t execute the code. It only defines what code to execute
when you call the function. When the execution reaches a def statement it skips down to the first
line after the def-block.

But when the displayIntro() function is called (such as on line 38), the execution moves inside
of the displayIntro() function to the first line of the def-block.

38. displayIntro()

Then all of the print() calls are run and the “You are in a land full of dragons...” introduction is
displayed.

Where to Put Function Definitions

A function's def statement and the def-block must come before you call the function. This is like
how you must assign a value to a variable before you use the variable. If you put the function call
before the function definition, you’ll get an error. For example, look at this code:

sayGoodbye ()

def sayGoodbye():

50 http://inventwithpython.com

print('Goodbye!")

If you try to run it, Python will give you an error message that looks like this:

Traceback (most recent call last):

File "C:\Python34\spam.py", 1line 1, in <module>
sayGoodbye ()
NameError: name 'sayGoodbye' is not defined

To fix this, put the function definition before the function call:

def sayGoodbye():
print('Goodbye!")

sayGoodbye ()

Defining the choosecave() Function

11. def chooseCave():

Line 11 defines another function called chooseCave (). This function’s code asks the player
which cave they want to go in, either 1 or 2.

12. cave =
13. while cave != '1' and cave != '"2":

This function needs to make sure the player typed 1 or 2, and not something else. A loop here will
keep asking the player until they enter one of these two valid responses. This is called input
validation.

Line 12 creates a new variable called cave and stores a blank string in it. Then a while loop
begins on line 13. The condition contains a new operator you haven't seen before called and. Just
like the - or * are mathematical operators, and == or != are comparison operators, the and
operator is a Boolean operator.

Boolean Operators

Boolean logic deals with things that are either True or False. Boolean operators compare values
and evaluate to a single Boolean value.

Post questions to http://invpy.com/forum

Chapter 6 - Dragon Realm 51

Think of the sentence, “Cats have whiskers and dogs have tails.” “Cats have whiskers” is true and
“dogs have tails” is also true, so the entire sentence “Cats have whiskers and dogs have tails” is
true.

But the sentence, “Cats have whiskers and dogs have wings” would be false. Even though “cats
have whiskers” is true, dogs do not have wings, so “dogs have wings” is false. In Boolean logic,
things can only be entirely true or entirely false. Because of the word “and”, the entire sentence is
only true if both parts are true. If one or both parts are false, then the entire sentence is false.

The and and or Operators

The and operator in Python is the same. If the Boolean values on both sides of the and keyword
are True, then the expression evaluates to True. If either or both of the Boolean values are False,
then the expression evaluates to False.

Try entering the following expressions with the and operator into the interactive shell:

>>> True and True

True

>>> True and False

False

>>> False and True

False

>>> False and False

False

>>> spam = 'Hello'

>>> 10 < 20 and spam == 'Hello'
True

The or operator is similar to the and operator, except it will evaluate to True if either of the two
Boolean values are True. The only time the or operator evaluates to False is if both of the
Boolean values are False.

Try entering the following into the interactive shell:

>>> True or True

True

>>> True or False

True

>>> False or True

True

>>> False or False
False

>>> 10 > 20 or 20 > 10
True

52 http://inventwithpython.com

The not Operator

The not operator only works on one value, instead of combining two values. The not operator
evaluates to the opposite Boolean value. The expression not True will evaluate to False and not
False will evaluate to True.

Try entering the following into the interactive shell:

>>> not True

False

>>> not False

True

>>> not ('black' == 'white')
True

Truth Tables

If you ever forget how the Boolean operators work, you can look at these truth tables:

Table 6-1: The and operator's truth table.

A and B is Entire statement
True and True is True
True and False is False
False and True is False
False and False is False

Table 6-2: The or operator's truth table.

A or B is Entire statement
True or True is True
True or False is True
False or True is True
False or False is False

Table 6-3: The not operator's truth table.

not A is Entire statement
not True is False
not False is True

Post questions to http://invpy.com/forum

Chapter 6 - Dragon Realm 53

Evaluating Boolean Operators

Look at line 13 again:

13. while cave != '1l' and cave != '"2':

The condition has two parts connected by the and Boolean operator. The condition is True only if
both parts are True.

The first time the while statement’s condition is checked, cave is set to the blank string, ' *. The
blank string is not equal to the string '1', so the left side evaluates to True. The blank string is
also not equal to the string '2", so the right side evaluates to True.

So the condition then turns into True and True. Because both values are True, the condition
finally evaluates to True. So the program execution enters the while-block.

This is what the evaluation looks like (if the value of cave is the blank string):

while cave != '1l' and cave != '2':
v

while ''" I= "1" and cave != '2':
v

while True and cave != '2":
v

while True and '' I= "2":
v

while True and True:
v

while True:

Getting the Player’s Input

13. while cave != '1l' and cave != '2":
14. print('Which cave will you go into? (1 or 2)'")
15. cave = input(Q)

Line 14 asks the player which cave they choose. Line 15 lets the player type the response and hit
ENTER. This response is stored in cave. After this code is executed, the execution loops back to
the top of the whiTe statement and rechecks the condition.

If the player typed in 1 or 2, then cave will either be "1' or '2" (since input () always returns
strings). This makes the condition False, and the program execution will continue past the while
loop. For example, if the user entered '1' then the evaluation would look like this:

54 http://inventwithpython.com

while cave != '1l' and cave != '2':
v

while '1' != '"1"'" and cave != '2':
v

while False and cave != '2":
v

while False and '1' != '2":
v

while False and True:
v

while False:

But if the player typed 3 or 4 or HELLO, that response would be invalid. The condition will be
True and enters the while-block to ask the player again. The program will keep asking until the
player types 1 or 2. This will guarantee that once the execution moves on, the cave variable
contains a valid response.

Return Values

17. return cave

This is a return statement, which only appears inside def-blocks. Remember how the input
function returns a string value that the player typed in? The chooseCave () function will also
return a value. Line 17 returns the string that is stored in cave, either '1' or '2".

Once the return statement executes, the program execution jumps immediately out of the def-
block. (This is like how the break statement will make the execution jump out of a while-block.)
The program execution moves back to the line with the function call. The function call itself will
evaluate to the return value.

Skip down and look at line 40 for a moment:

40. caveNumber = chooseCave()

When the chooseCave () function is later called by the program on line 40, the return value is
stored in the caveNumber variable. The whiTle loop guarantees that chooseCave () will only
return either '1' or '2" as its return value.

So when line 17 returns a string, the function call on line 40 evaluates to this string, which is then
stored in caveNumber.

Post questions to http://invpy.com/forum

Chapter 6 - Dragon Realm 55

Global Scope and Local Scope

Your program’s variables are forgotten after the program terminates. The variables created while
the execution is inside a function call are the same. The variables are created when the function is
called and forgotten when the function returns. Remember, functions are kind of like mini-
programs in your program.

When execution is inside a function, you cannot change the variables outside of the function,
including variables inside other functions. This is because these variables exist in a different
“scope”. All variables exist in either the global scope or a function call’s local scope.

The scope outside of all functions is called the global scope. The scope inside of a function (for
the duration of a particular function call) is called a local scope.

The entire program has only one global scope. Variables defined in the global scope can be read
outside and inside functions, but can only be modified outside of all functions. Variables created
in a function call can only be read or modified during that function call.

You can read the value of global variables from the local scope, but attempting to change a global
variable from the local scope won’t work. What Python actually does in that case is create a local

variable with the same name as the global variable. You could, for example, have a local variable
named spam at the same time as having a global variable named spam. Python will consider these

to be two different variables.

Look at this example to see what happens when you try to change a global variable from inside a
local scope. The comments explain what is going on:

def bacon():
We create a local variable named "spam"
instead of changing the value of the global
variable "spam":
spam = 99
The name "spam" now refers to the local
variable only for the rest of this
function:
print(spam) # 99

spam = 42 # A global variable named "spam":
print(spam) # 42

bacon() # Call the bacon() function:

The global variable was not changed in bacon():
print(spam) # 42

When run, this code will output the following:

56 http://inventwithpython.com

42
99
42

Where a variable is created determines what scope it is in. When the Dragon Realm program first
executes the line:

(]

12. cave =

...the variable cave is created inside the chooseCave () function. This means it is created in the
chooseCave () function’s local scope. It will be forgotten when chooseCave () returns, and will
be recreated if chooseCave () is called a second time. The value of a local variable isn’t
remembered between function calls.

Parameters

19. def checkCave(chosenCave):

The next function the program defines is named checkCave (). Notice the text chosenCave
between the parentheses. This is a parameter: a local variable that is assigned the argument
passed when this function is called.

Remember how for some function calls like str() or randint(), you would pass one or more
arguments between the parentheses:

>>> str(5)

l5l

>>> random.randint(1l, 20)
14

You will also pass an argument when you call checkCave (). This argument is stored in a new
variable named chosenCave. These variables are also called parameters.

For example, here is a short program that demonstrates defining a function with a parameter:

def sayHello(name):
print('Hello, '

1 A}

+ name + '. Your name has + str(len(name)) + ' letters.')
sayHeTllo('Alice")

sayHello('Bob")

spam = 'Carol'

sayHeTlo(spam)

Post questions to http://invpy.com/forum

Chapter 6 - Dragon Realm 57

If you run this program, it would look like this:

Hello, Alice. Your name has 5 Tetters.
Hello, Bob. Your name has 3 Tetters.
HeTllo, Carol. Your name has 5 letters.

When you call sayHe110(), the argument is assigned to the name parameter. Parameters are just
ordinary local variables. Like all local variables, the values in parameters will be forgotten when
the function call returns.

Displaying the Game Results

Back to the game’s source code:

20. print('You approach the cave...')
21. time.sleep(2)

The time module has a function called s1eep() that pauses the program. Line 21 passes the
integer value 2 so that time.sleep() will pause the program for 2 seconds.

22. print('It is dark and spooky...")
23. time.sleep(2)

Here the code prints some more text and waits for another 2 seconds. These short pauses add
suspense to the game, instead of displaying the text all at once. In the previous chapter’s Jokes
program, you called the input() function to pause until the player pressed the ENTER key. Here,
the player doesn’t have to do anything except wait a couple seconds.

24. print('A Targe dragon jumps out in front of you! He opens his jaws
and...")

25. print()

26. time.sleep(2)

What happens next? And how does the program decide? This is explained in the next section.

Deciding Which Cave has the Friendly Dragon

28. friendlyCave = random.randint(l, 2)

Line 28 calls the random. randint () function which will return either 1 or 2. This integer value
is stored in friendlyCave and is the cave with the friendly dragon.

58 http://inventwithpython.com

30. if chosenCave == str(friendlyCave):
31. print('Gives you his treasure!')

Line 30 checks if the player’s chosen cave in the chosenCave variable (*1' or '2") is equal to the
friendly dragon cave.

But the value in friendlyCave is an integer because random. randint() returns integers. You
can’t compare strings and integers with the == sign, because they will always be not equal to each
other. '1' isnotequal to 1 and '2"' is not equal to 2.

So friendlyCave is passed to str() function, which returns the string value of friendlyCave.
This way the values will be the same data type and can be meaningfully compared to each other.
This code could also have been used to convert chosenCave to an integer value:

if int(chosenCave) == friendlyCave:

If the condition is True, line 31 tells the player they have won the treasure.

32. else:
33. print('Gobbles you down in one bite!"')

Line 32 is an else statement. The else statement can only come after an if-block. The else-block
executes if the i f statement’s condition was False. Think of it as the program’s way of saying,
“If this condition is true then execute the if-block or else execute the else-block.”

Remember to put the colon (the : sign) after the e1se keyword.

Where the Main Part Begins

35. playAgain = 'yes'
36. while playAgain == 'yes' or playAgain ==

y !

Line 35 is the first line that isn’t a def statement or inside a def-block. This line is where the main
part of the program begins. The previous def statements merely defined the functions. They
didn’t run the code inside of the functions.

Line 35 and 36 are setting up a loop that the rest of the game code is in. At the end of the game,
the player can enter if they want to play again. If they do, the execution enters the while loop to
run the entire game all over again. If they don’t, the whiTe statement’s condition will be False
and the execution will move on to the end of the program and terminate.

Post questions to http://invpy.com/forum

Chapter 6 - Dragon Realm 59

The first time the execution comes to this whi1e statement, line 35 will have just assigned 'yes"
to the playAgain variable. That means the condition will be True. This guarantees that the
execution enters the loop at least once.

Calling the Functions in the Program

38. displayIntro()

Line 38 calls the displayIntro() function. This isn’t a Python function, it is your function that
you defined earlier on line 4. When this function is called, the program execution jumps to the
first line in the displayIntro() function on line 5. When all the lines in the function are done,
the execution jumps back to line 38 and continues moving down.

40. caveNumber = chooseCave()

Line 40 also calls a function that you defined. Remember that the chooseCave () function lets the
player type in the cave they want to go into. When the line 17’s return cave executes, the
program execution jumps back to line 40, and the chooseCave () call evaluates to the return
value. This return value is stored in a new variable named caveNumber. Then the program
execution moves on to line 42.

42. checkCave (caveNumber)

Line 42 calls your checkCave () function, passing the value in caveNumber as an argument. Not
only does execution jump to line 20, but the value in caveNumber is copied to the parameter
chosenCave inside the checkCave () function. This is the function that will display either 'Gives
you his treasure!' Or 'Gobbles you down in one bite!"' depending on the cave the player
chose to go into.

Asking the Player to Play Again

44 . print('Do you want to play again? (yes or no)')
45, playAgain = input()

Whether the player won or lost, they are asked if they want to play again. The variable
playAgain stores what the player typed. Line 45 is the last line of the while-block, so the

program jumps back to line 36 to check the while loop’s condition: playAgain == 'yes' or
playAgain == 'y

A}

If the player typed in the string 'yes' or 'y', then the execution would enter the loop again at
line 38.

60 http://inventwithpython.com

If the player typed in "no' or "'n' or something silly like 'Abraham Lincoln', then the condition
would be False. The program execution would continue on to the line after the while-block. But
since there are no more lines after the while-block, the program terminates.

One thing to note: the string 'YES' is not equal to the string 'yes'. If the player typed in the
string 'YES', then the while statement’s condition would evaluate to False and the program
would still terminate. Later programs in this book will show you how to avoid this problem.

You've just completed your second game! In Dragon Realm, you used a lot of what you learned
in the Guess the Number game and picked up a few new tricks. If you didn't understand some of
the concepts in this program, then go over each line of the source code again, and try changing
the source code and see how the program changes.

In the next chapter you won’t create a game, but instead learn how to use a feature of IDLE called
the debugger.

Designing the Program

Dragon Realm is a simple game. The other games in this book will be a bit more complicated. It
sometimes helps to write down everything you want your game or program to do before you start
writing code. This is called “designing the program.”

For example, it may help to draw a flow chart. A flow chart is a picture that shows every possible
action that can happen in the game, and which actions lead to which other actions. Figure 6-2 is a
flow chart for Dragon Realm.

To see what happens in the game, put your finger on the “Start” box. Then follow one arrow from
the box to another box. Your finger is like the program execution. The program terminates when
your finger lands on the “End” box.

When you get to the “Check for friendly or hungry dragon” box, you can go to the “Player wins”
box or the “Player loses” box. This branching point shows how the program can do different
things. Either way, both paths will end up at the “Ask to play again” box.

Summary

In the Dragon Realm game, you created your own functions. Functions are a mini-program within
your program. The code inside the function runs when the function is called. By breaking up your
code into functions, you can organize your code into smaller and easier to understand sections.

Arguments are values copied to the function’s parameters when the function is called. The
function call itself evaluates to the return value.

Post questions to http://invpy.com/forum

Chapter 6 - Dragon Realm 61

Figure 6-2: Flow chart for the Dragon Realm game.

You also learned about variable scopes. Variables created inside of a function exist in the local
scope, and variables created outside of all functions exist in the global scope. Code in the global
scope cannot make use of local variables. If a local variable has the same name as a variable in
the global scope, Python considers it a separate variable and assigning new values to the local
variable won’t change the value in the global variable.

Variable scopes might seem complicated, but they are useful for organizing functions as separate
pieces of code from the rest of the program. Because each function has its own local scope, you
can be sure that the code in one function won’t cause bugs in other functions.

Almost every program uses functions because they are so useful. By understanding how functions
work, you can save yourself a lot of typing and make bugs easier to fix.

62 http://inventwithpython.com

Chapter 7

USING THE DEBUGGER

Topics Covered In This Chapter:
o 3 Different Types of Errors

e IDLE’s Debugger

e Stepping Into, Over, and Out
e Go and Quit

e Break Points

Bugs!

“On two occasions I have been asked, 'Pray, Mr. Babbage, if you put into the machine wrong
figures, will the right answers come out?' | am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.”

-Charles Babbage, 19th century originator the concept of a programmable computer.

If you enter the wrong code, the computer won’t give you the right program. A computer program
will always do what you tell it to, but what you tell the program to do might not be the same as
what you wanted the program to do. These errors are bugs in a computer program. Bugs happen
when the programmer has not carefully thought about what exactly the program is doing. There
are three types of bugs that can happen with your program:

Syntax Errors are a type of bug that comes from typos. When the Python interpreter sees
a syntax error, it is because your code isn’t written in proper Python language. A Python
program with even a single syntax error won’t run.

Runtime Errors are bugs that happen while the program is running. The program will
work up until it reaches the line of code with the error, and then the program terminates
with an error message (this is called crashing). The Python interpreter will display a
“traceback” and show the line where the problem happens.

Semantic Errors are the trickiest to fix. These bugs don’t crash the program, but it isn’t
doing what the programmer intended for the program to do. For example, if the
programmer wants the variable total to be the sum of the values in variables a, b, and c
but writes total = a * b * ¢, then the value in total will be wrong. This could crash
the program later on, but it is not immediately obvious where the semantic bug happened.

Post questions to http://invpy.com/forum

Chapter 7 - Using the Debugger 63

Finding bugs in a program can be hard, if you even notice them at all! When running your
program, you may discover that sometimes functions are not called when they are supposed to be,
or maybe they are called too many times. You may code the condition for a while loop wrong, so
that it loops the wrong number of times. (A loop in your program that never exits is a kind of bug
called an infinite loop. To stop this program, you can press Ctrl-C in the interactive shell to
terminate the program.) Any of these things could mistakenly happen in your code if you are not
careful.

In fact, from the interactive shell, go ahead and create an infinite loop by typing this code in (you
have to press ENTER twice to let the interactive shell know you are done typing in the while-
block:

>>> while True:
print('Press Ctr1-C to stop this infinite Toop!!!")

Now press and hold down the Ctrl key and press the C key to stop the program. The interactive
shell will look like this:

Press Ctrl1-C to stop this infinite Toop!!!
Press Ctrl1-C to stop this infinite Toop!!!
Press Ctrl1-C to stop this infinite Toop!!!
Press Ctrl1-C to stop this infinite Toop!!!
Press Ctrl1-C to stop this infinite Toop!!!
Traceback (most recent call last):

File "<pyshell#1>", Tine 1, in <module>

while True: print('Press Ctr1-C to stop this infinite loop!!!")

KeyboardInterrupt

The Debugger

It can be hard to figure out how your code could be causing a bug. The lines of code get executed
quickly and the values in variables change so often. A debugger is a program that lets you step
through your code one line at a time in the same order that Python executes them. The debugger
also shows you what values are stored in variables at each step.

Starting the Debugger

In IDLE, open the Dragon Realm game you made in the last chapter. After opening the dragon.py
file, click on the Debug » Debugger to make the Debug Control window appear (Figure 7-1).

64 http://inventwithpython.com

W Stacx ¥ Souce
o'xl)Irx\l (‘mlf)nl Ot I
¥ Locan M Globaly
NOn -
|}
-
Locess
Sooe S
Globals
None z

Figure 7-1: The Debug Control window.

Bt —— , B g, S ————
LA i M e 0 ot e o s R N PO PN S
\|eython 3.4.0 (v1.4.0:04£714765c13, Mar 16 2014, 19:25;23) (MEC v,1600 €€ bit (N!;]
Dé4)] on winil

Type “copyright", “crediza" or "licemse ()" for more informatiom.
>

[tmneG nw)

> RESTART
[DEB0G 0N)

»>>

G0’), fine 431 eveciomd, giobais, oo

buitting «moduie "balltng (it >
o Nose
S < 13wy i 9

Figure 7-2: Running the Dragon Realm game under the debugger.

Post questions to http://invpy.com/forum

Chapter 7 - Using the Debugger 65

Now when you run the Dragon Realm game by pressing F5, IDLE’s debugger will activate. This
is called running a program “under a debugger”. In the Debug Control window, check the Source
and Globals checkboxes.

When you run Python programs under the debugger, the program will stop before it executes the
first instruction. If you click on the file editor window's title bar (and you’ve checked the Source
checkbox in the Debug Control windowy), the first instruction is highlighted in gray. The Debug
Control window shows the execution is on line 1, which is the import random line.

Stepping

The debugger lets you execute one instruction at a time. This is called stepping. To execute a
single instruction, click the Step button in the Debug Window. Go ahead and do this now. Python
will execute the import random instruction, and then stop before it executes the next instruction.
The Debug Control window will show the execution is now on line 2, the import time line.
Click the Quit button to terminate the program for now.

Here is a summary of what happens when you click the Step button when you run the Dragon
Realm game under a debugger. Press F5 to start running Dragon Realm again, then follow these
instructions:

Click the Step button twice to run the two import lines.

Click the Step button three more times to execute the three def statements.
Click the Step button again to define the playAgain variable.

Click Go to run the rest of the program, or click Quit to terminate the program.

el

The Debug Control window will show you what line is about to be executed when you click the
Step button in the Debug Control window. The debugger skipped line 3 because it’s a blank line.
Notice you can only step forward with the debugger, you cannot go backwards.

Globals Area

The Globals area in the Debug Control window is where all the global variables can be seen.
Remember, global variables are the variables that are created outside of any functions (that is, in
the global scope).

As the three def statements execute and define functions, they will appear in the Globals area of
the Debug Control window.

The text next to the function names in the Globals area will look like “<function checkCave at
0x012859B0>*“. The module names also have confusing looking text next to them, such as
“<module 'random’ from 'C:\\Python31\lib\\random.pyc"™>“. You don’t need to know what it

66 http://inventwithpython.com

means to debug your programs. Just seeing that the functions and modules are there in the Global
area will tell you if the function has been defined or the module has been imported.

You can also ignore the __builtins__, __doc__, and __name__ lines in the Global area. (Those
are variables that appear in every Python program.)

When the playAgain variable is created it will show up in the Global area. Next to the variable
name will be the string 'yes'. The debugger lets you see the values of all the variables in the
program as the program runs. This is useful for fixing bugs.

Locals Area

There is also a Locals area, which shows you the local scope variables and their values. The local
area will only have variables in it when the program execution is inside of a function. When the
execution is in the global scope, this area is blank.

The Go and Quit Buttons

If you get tired of clicking the Step button repeatedly and just want the program to run normally,
click the Go button at the top of the Debug Control window. This will tell the program to run
normally instead of stepping.

To terminate the program entirely, just click the Quit button at the top of the Debug Control
window. The program will exit immediately. This is helpful if you must start debugging again
from the beginning of the program.

Stepping Into, Over, and Out

Start the Dragon Realm program with the debugger. Keep stepping until the debugger is at line
38. As shown in Figure 7-3, this is the line with displayIntro(). When you click Step again,
the debugger will jump into this function call and appear on line 5, the first line in the
displayIntro() function. The kind of stepping you have been doing is called stepping into.
This is different from stepping over, explained next.

Post questions to http://invpy.com/forum

Chapter 7 - Using the Debugger 67

. .

e 10 ¥ Stack ¥ Souce

Go | Step | Over u_xns Qul
4 4 4 4 ¥ Locals ¥ Globals |

ragangy 38 «modues () »

Bty sun), e 431 somciomd. glodaly, locws

in mmfe

chooseCave * Nt PoQ

digtagatre <furcton daplaglaira ot xDOOI0C000TB06ELS >
playhgmn Yes

i LTI T 11 w100 il WML & 1B (VARV RRRTF o)

Figure 7-3: Keep stepping until you reach line 38.

When the execution is paused at line 5, clicking Step one more time will step into the print Q)
function. The print() function is one of Python’s built-in functions, so it isn’t useful to step
through with the debugger. Python’s own functions such as print(), input(), str(, or
random. randint() have been carefully checked for errors. You can assume they’re not the parts
causing bugs in your program.

So you don’t want to waste time stepping through the internals of the print () function. So
instead of clicking Step to step into the print() function’s code, click Over. This will step over
the code inside the print () function. The code inside print() will be executed at normal speed,
and then the debugger will pause once the execution returns from print(Q).

Stepping over is a convenient way to skip stepping through code inside a function. The debugger
will now be paused at line 40, caveNumber = chooseCave().

Click Step one more time to step into the chooseCave () function. Keep stepping through the
code until line 15, the input () call. The program will wait until you type a response into the
interactive shell, just like when you run the program normally. If you try clicking the Step button
now, nothing will happen because the program is waiting for a keyboard response.

68 http://inventwithpython.com

Click back on the interactive shell window and type which cave you want to enter. The blinking
cursor must be on the bottom line in the interactive shell before you can type. Otherwise the text
you type will not appear.

Once you press ENTER, the debugger will continue to step lines of code again. Click the Out
button on the Debug Control window. This is called stepping out, because it will cause the
debugger to step over as many lines as it needs to until execution has returned from the function it
is in. After it jumps out, the execution will be on the line after the line that called the function.

For example, clicking Out inside the dispTayIntro() function on line 6 would step until the
function returned to the line after the call to displayIntro(). Stepping out can save you from
having to click Step repeatedly to jump out of the function.

If you are not inside a function, clicking Out will cause the debugger will execute all the
remaining lines in the program. This is the same behavior as clicking the Go button.

Here’s a recap of what each button does:

e (o - Executes the rest of the code as normal, or until it reaches a break point. (Break
points are described later.)

e Step - Step one instruction. If the line is a function call, the debugger will step into the
function.

e Over - Step one instruction. If the line is a function call, the debugger won’t step into the
function, but instead step over the call.

e Out - Keeps stepping over lines of code until the debugger leaves the function it was in
when Out was clicked. This steps out of the function.

e Quit - Immediately terminates the program.

Find the Bug

The debugger can help you find the cause of bugs in your program. As an example, here is a
small program with a bug. The program comes up with a random addition problem for the user to
solve. In the interactive shell window, click on File, then New Window to open a new file editor
window. Type this program into that window, and save the program as buggy.py.

buggy . py
. import random
. nhumberl = random.randint(1, 10)
. number2 = random.randint(1, 10)
. print('"What is ' + str(numberl) +
. answer = input()
. if answer == numberl + number2:

+ ' + str(number2) + '?")

SV WN =

Post questions to http://invpy.com/forum

Chapter 7 - Using the Debugger 69

7. print('Correct!")
8. else:
9. print('Nope! The answer 1is ' + str(numberl + number2))

Type the program as it is above, even if you can already tell what the bug is. Then trying running
the program by pressing F5. This is a simple arithmetic quiz that comes up with two random
numbers and asks you to add them. Here’s what it might look like when you run the program:

What is 5 + 1?
6
Nope! The answer is 6

That’s a bug! The program doesn’t crash but it is not working correctly. The program says the
user is wrong even if they type the correct answer.

Running the program under a debugger will help find the bug’s cause. At the top of the
interactive shell window, click on Debug » Debugger to display the Debug Control window. In
the Debug Control window, check all four checkboxes (Stack, Source, Locals, and Globals). This
makes the Debug Control window provide the most information. Then press F5 in the file editor
window to run the program. This time it will be run under the debugger.

1. import random

The debugger starts at the import random line. Nothing special happens here, so just click Step
to execute it. You will see the random module added to the Globals area.

2. numberl = random.randint(1l, 10)

Click Step again to run line 2. A new file editor window will appear with the random.py file. You
have stepped inside the randint() function inside the random module. Python’s built-in
functions won’t be the source of your bugs, so click Out to step out of the randint() function
and back to your program. Then close the random.py file's window.

3. number2 = random.randint(l, 10)

Next time, you can click Over to step over the randint () function instead of stepping into it.
Line 3 is also a randint() function call. Skip stepping into this code by clicking Over.

4. print('What is ' + str(numberl) + + ' + str(number2) + '?")

70 http://inventwithpython.com

Line 4 isa print() call to show the player the random numbers. You know what numbers the
program will print even before it prints them! Just look at the Globals area of the Debug Control
window. You can see the numberl and number2 variables, and next to them are the integer values

stored in those variables.

The number1 variable has the value 4 and the number2 variable has the value 8. When you click
Step, the program will display the string in the print () call with these values. The str()
function will concatenate the string version of these integers. When | ran the debugger, it looked
like Figure 7-4. (Your random numbers will probably be different.)

)

A Debug Cotmeot

| W Siacx W Souece
1 0o Step | Oy -30'\ Quat
| | ¥ Locan F Globals

| tuggyoyd: «smodides|

Lociss

Sone
Globais
Bl <module Wi eit-n)

o
3TN\ \eupoy.oy

e
Joader - <clam ’_hozen
mame Tan
package Nure
o Nove
mmber] ¢
wimber2 8

SO00e «module andom’ o T4\ ton &\ \imdoam oy > h

Figure 7-4: numberl is set to 4 and number2 is set to 8.

5. answer = input()

Clicking on Step from line 5 will execute input (). The debugger waits until the player enters a
response into the program. Enter the correct answer (in my case, 12) into the interactive shell
window. The debugger will resume and move down to line 6.

6. if answer == numberl + number2:
7. print('Correct!")

Line 6 is an i f statement. The condition is that the value in answer must match the sum of
numberl and number2. If the condition is True, then the debugger will move to line 7. If the

Post questions to http://invpy.com/forum

Chapter 7 - Using the Debugger 71

condition is False, the debugger will move to line 9. Click Step one more time to find out where
it goes.

8. else:
9. print('Nope! The answer iis

v

+ str(numberl + number2))

The debugger is now on line 9! What happened? The condition in the i f statement must have
been False. Take a look at the values for numberl, number2, and answer. Notice that numberl
and number2 are integers, so their sum would have also been an integer. But answer is a string.

That means that answer == numberl + number2 would have evaluated to '12' == 12. A string
value and an integer value will always not equal each other, so the condition evaluated to False.

That is the bug in the program. The bug is that the code has answer when it should have
int(answer). Change line 6 to int(answer) == numberl + number2, and run the program
again.

What is 2 + 37
5
Correct!

This time, the program worked correctly. Run it one more time and enter a wrong answer on
purpose. This will completely test the program. You’ve now debugged this program! Remember,
the computer will run your programs exactly as you type them, even if what you type isn’t what
you intend.

Break Points

Stepping through the code one line at a time might still be too slow. Often you’ll want the
program to run at normal speed until it reaches a certain line. A break point is set on a line when
you want the debugger to take control once execution reaches that line. If you think there’s a
problem with your code on, say, line 17, just set a break point on line 17 (or maybe a few lines
before that).

When execution reaches that line, the debugger will “break into the debugger”. Then you can step
through lines one at a time to see what is happening. Clicking Go will execute the program
normally until it reaches another break point or the end of the program.

To set a break point, right-click on the line in the file editor and select Set Breakpoint from the
menu that appears. The file editor will highlight that line with yellow. You can set break points
on as many lines as you want. To remove the break point, click on the line and select Clear
Breakpoint from the menu that appears.

72 http://inventwithpython.com

— . S
| A Python 144 oragenpy - CAtagon gy T e
l fle fdnt fgmat Bun Qotom Windows Help

| rardcn -}
I :
‘ tine

|

Figure 7-5: The file editor with two break points set.
Example Using Break Points

Here is a program that simulates coin flips by calling random. randint(0, 1). The function
returning the integer 1 will be “heads” and returning the integer 0 will be “tails”. The f1ips
variable will track how many coin flips have been done. The heads variable will track how many
came up heads.

The program will do “coin flips” one thousand times. This would take a person over an hour to
do, but the computer can do it in one second! Type in the following code into the file editor and
save it as coinFlips.py. If you get errors after typing this code in, compare the code you typed to

coinFlips.py
1. import random
2. print('I will flip a coin 1000 times. Guess how many times it will come up
heads. (Press enter to begin)')

3. dinputQ

4. flips = 0

5. heads = 0

6. while flips < 1000:

7. if random.randint(0, 1) ==

8. heads = heads + 1

9. flips = flips + 1

10.

11. if flips == 900:

12. print('900 flips and there have been ' + str(heads) + ' heads.')
13. if flips == 100:

14. print('At 100 tosses, heads has come up ' + str(heads) + ' times so
far.")

15. if flips == 500:

Post questions to http://invpy.com/forum

Chapter 7 - Using the Debugger 73

L})

16. print('Half way done, and heads has come up ' + str(heads) +
times."')

17.

18. print(Q

19. print('Out of 1000 coin tosses, heads came up

20. print('Were you close?')

] A}

+ str(heads) + times!")

The program runs pretty fast. It spent more time waiting for the user to press ENTER than doing
the coin flips. Let’s say you wanted to see it do coin flips one by one. On the interactive shell's
window, click on Debug » Debugger to bring up the Debug Control window. Then press F5 to
run the program.

The program starts in the debugger on line 1. Press Step three times in the Debug Control
window to execute the first three lines (that is, lines 1, 2, and 3). You’ll notice the buttons become
disabled because input () was called and the interactive shell window is waiting for the user to
type something. Click on the interactive shell window and press ENTER. (Be sure to click beneath
the text in the interactive shell window, otherwise IDLE might not receive your keystrokes.)

You can click Step a few more times, but you’ll find that it would take quite a while to get
through the entire program. Instead, set a break point on lines 12, 14, and 16. The file editor will
highlight these lines as shown in Figure 7-6.

| RS el i kb = 18 Sl
| A Python 5428 comf Apsgy - Cheomt bpspy =L X
1

e Lo fgrmat Bun Qotom Windows Help

[as — - —

Figure 7-6: Three break points set.

After setting the breakpoints, click Go in the Debug Control window. The program will run at
normal speed until it reaches the next break point. When f11p is set to 100, the condition for the
if statement on line 13 is True. This causes line 14 (where there’s a break point set) to execute,
which tells the debugger to stop the program and take over. Look at the Debug Control window in
the Globals section to see what the value of f1ips and heads are.

Click Go again and the program will continue until it reaches the next break point on line 16.
Again, see how the values in f1ips and heads have changed.

If you click Go again, the execution will continue until the next break point is reached, which is
on line 12.

74 http://inventwithpython.com

Summary

Writing programs is only the first part of programming. The next part is making sure the code you
wrote actually works. Debuggers let you step through the code one line at a time. You can
examine which lines execute in what order, and what values the variables contain. When this is
too slow, you can set break points to stop the debugger only at the lines you want.

Using the debugger is a great way to understand what a program is doing. While this book
provides explanations of all the game code in it, the debugger can help you find out more on your
own.

Post questions to http://invpy.com/forum

Chapter 8 - Flow Charts 75

Chapter 8

FLOW CHARTS

Topics Covered In This Chapter:

e How to play Hangman

e ASCII art

e Designing a program with flow charts

In this chapter, you’ll design a Hangman game. This game is more complicated than our previous
game, but also more fun. Because the game is advanced, you should first carefully plan it out by
creating a flow chart (explained later). In the next chapter, you’ll actually write out the code for
Hangman.

How to Play Hangman

Hangman is a game for two people usually played with paper and pencil. One player thinks of a
word, and then draws a blank on the page for each letter in the word. Then the second player tries
to guess letters that might be in the word.

If they guess correctly, the first player writes the letter in the proper blank. If they guess
incorrectly, the first player draws a single body part of the hanging man. If the second player can
guess all the letters in the word before the hangman is completely drawn, they win. But if they
can’t figure it out in time, they lose.

Sample Run of Hangman

Here is an example of what the player might see when they run the Hangman program you’ll
write in the next chapter. The text that the player enters in shown in bold.

HANGMAN
+--—+

Missed letters:

76 http://inventwithpython.com

Guess a letter.

Missed letters:

a
Guess a Tletter.
o

+-——+

I

0

Missed letters: o

a
Guess a Tletter.
r

s

I

0

Missed letters: or

a
Guess a Tletter.
t

+---+

I

0

Missed letters: or
_at
Guess a Tletter.

a
You have already guessed that letter. Choose again.

Post questions to http://invpy.com/forum

Chapter 8 - Flow Charts 77

Guess a letter.

C

Yes! The secret word is "cat"! You have won!
Do you want to play again? (yes or no)

no

ASCII Art

The graphics for Hangman are keyboard characters printed on the screen. This type of graphics is
called ASCII art (pronounced “ask-ee”), which was a sort of precursor to emojii. Here is a cat
drawn in ASCI|I art:

/ XX XXX \
_/XXX XX XXX XXX __
_/ XXX XXX XX XXX _
7/ XXXXXXXXX XX XX XX XX XXX\
/ xx /\ XX xx\
/ / N\ X xx \
| /\ | \ xx - x\
| [\ | | W z x 0\
| [4 \ z XxXx |
| | \ z |
\/ \ \
/ S | |
| \ | XXX |
/ - - _/ x|
/| | | / |
[o\ ------—- \—/ -/ —/ xx /
[oo \ I A xx/
\ _ _/ xx /
\ \ / x_/
AN /
\ /

Designing a Program with a Flowchart

This game is a bit more complicated than the ones you’ve seen so far, so take a moment to think
about how it’s put together. First you’ll create a flow chart (like the one at the end of the Dragon
Realm chapter) to help visualize what this program will do. This chapter will go over what flow
charts are and why they are useful. The next chapter will go over the source code to the Hangman
game.

A flow chart is a diagram that shows a series of steps as boxes connected with arrows. Each box
represents a step, and the arrows show the steps leads to which other steps. Put your finger on the

78 http://inventwithpython.com

“Start” box of the flow chart and trace through the program by following the arrows to other
boxes until you get to the “End” box.

Figure 8-1 is a complete flow chart for Hangman. You can only move from one box to another in
the direction of the arrow. You can never go backwards unless there’s a second arrow going back,
like in the “Player already guessed this letter” box.

START

C0me up with @
secred word.,

4

Show +he board and
blanks +0 +he player.

¥

QSK ployer +o
9U€SS Qa letter,

L Le+ter s in

Player already
9uess€d s le+ter.

Letter is not in
secret word. secret word,

L L

Player has guessed all Player has run
letters and wins. out of body

parts and loses.

FAsk player +o END |

play again,

Figure 8-1: The complete flow chart for what happens in the Hangman game.

Of course, you don’t have to make a flow chart. You could just start writing code. But often once
you start programming you’ll think of things that must be added or changed. You may end up

Post questions to http://invpy.com/forum

Chapter 8 - Flow Charts 79

having to delete a lot of your code, which would be a waste of effort. To avoid this, it’s always
best to plan how the program will work before you start writing it.

Creating the Flow Chart

Your flow charts don’t always have to look like this one. As long as you understand the flow
chart you made, it will be helpful when you start coding. A flow chart that begins with just a
“Start” and an “End” box, as shown in Figure 8-2:

START

END

Figure 8-2: Begin your flow chart with a Start and End box.

80 http://inventwithpython.com

Now think about what happens when you play Hangman. First, the computer thinks of a secret
word. Then the player will guess letters. Add boxes for these events, as shown in Figure 8-3. The
new boxes in each flow chart have a dashed outline around them.

The arrows show the order that the program should move. That is, first the program should come
up with a secret word, and after that it should ask the player to guess a letter.

START

- - .

Come up with a |,
secre+ word. |,

I

\
Ask player +0 :
'
'

guess o let+ter.

END

Figure 8-3: Draw out the first two steps of Hangman as boxes with descriptions.

But the game doesn’t end after the player guesses one letter. It needs to check if that letter is in
the secret word or not.

Post questions to http://invpy.com/forum

Chapter 8 - Flow Charts 81

Branching from a Flowchart Box

There are two possibilities: the letter is either in the word or not. You’ll add two new boxes to the
flowchart, one for each case. This creates a branch in the flow chart, as show in Figure 8-4:

START

N T

Come up with a
secre+ word.

{

Ask player +o
quess Q let+ter.

Let+ter is not inli
secre+ word. |!

Letter is in
secre+ word.

I
|
U |
| |
| |

END

Figure 8-4: The branch has two arrows going to separate boxes.

82 http://inventwithpython.com

If the letter is in the secret word, check if the player has guessed all the letters and won the game.
If the letter isn’t in the secret word, another body part is added to the hanging man. Add boxes for

those cases too.

You don’t need an arrow from the “Letter is in secret word” box to the “Player has run out of
body parts and loses” box, because it’s impossible to lose as long as the player guesses correctly.
It’s also impossible to win as long as the player is guessing incorrectly, so you don’t need to draw
that arrow either. The flow chart now looks like Figure 8-5.

START

—

COme up with @
secred+ word.

4

Ask player +o

9uess Q letter,

Letter s in Letter s not in
secred word. secre+ word.

B Al

p‘aver nas 9u€SSed all pia\/ef has run
letters and wins. out of body
parts and loses.

- —
- - -

|
[
|
|
|
|
|

Figure 8-5: After the branch, the steps continue on their separate paths.

Post questions to http://invpy.com/forum

Ending or Restarting the Game

Chapter 8 - Flow Charts 83

Once the player has won or lost, ask them if they want to play again with a new secret word. If
the player doesn’t want to play again, the program will end. If the program doesn’t end, it thinks

up a new secret word. This is shown in Figure 8-6.

START

COme up with
secre+ word.

)

QSK player +o

secred word.

guess a 'HK
Letter s in Letter is not in

secred word.

L

Plaver has 9uessed all
let+ers and wins,

Ask player +o
play 09010.

L

Piayer has run
out of body

parts and loses.

END

Figure 8-6: The flow chart branches when asking the player to play again.

84 http://inventwithpython.com

Guessing Again

The player doesn’t guess a letter just once. They have to keep guessing letters until they win or
lose. You’ll draw two new arrows, as shown in Figure 8-7.

START

Come up wih a
secre+ word.

{

"Gsk plaver +o
9uess o letter,

Letter is not in :
secret word. secre+ word, _

[

Player has 9uessed all Plaver has run
let+ers and wins, out of body

parts and loses,

‘Leter 5 in

Ask player +0 END |
play agamn.

Figure 8-7: The new arrows (outlined) show the player can guess again.

Post questions to http://invpy.com/forum

Chapter 8 - Flow Charts 85

What if the player guesses the same letter again? Rather than have them win or lose in this case,
allow them to guess a different letter instead. This new box is shown in Figure 8-8.

START

———————) ‘
1
¢ Plaver already :
|

Come up with a quessed this letter.
secret+ word.

Q’SK player +o
9u€55 a letter.

Letter is in

secred word,

Letter s not in
secret word,

Player has guessed all Player has run
letters and wins. out of body
parts and loses.

FAsk player +0
play again.

enD |

Figure 8-8: Adding a step in case the player guesses a letter they already guessed.
Offering Feedback to the Player

The player needs to know how they’re doing in the game. The program should show them the
hangman board and the secret word (with blanks for the letters they haven't guessed yet). These
visuals will let them see how close they are to winning or losing the game.

86 http://inventwithpython.com

This information is updated every time the player guesses a letter. Add a “Show the board and
blanks to the player.” box to the flow chart between the “Come up with a secret word” and the
“Ask player to guess a letter” boxes. These boxes are shown in Figure 8-9.

START

Come up with @
secret word.,

- Player already
Show +he board and 9uessed His letter.
blanks +0 +he player.

=g

Fsk ployer +o
9uess Qa letter.

k Le+ter s in

Letter is not in
secred word. secre+ word,

L L

Player has quessed all Player has run
letters and wins. out of body

parts and loses.

st player +o
play again.

END

Figure 8-9: Adding “Show the board and blanks to the player.” to give the player feedback.

That looks good! This flow chart completely maps out everything that can happen in Hangman
and in what order. When you design your own games, a flow chart can help you remember
everything you need to code.

Post questions to http://invpy.com/forum

Chapter 8 - Flow Charts 87

Summary

It may seem like a lot of work to sketch out a flow chart about the program first. After all, people
want to play games, not look at flowcharts! But it is much easier to make changes and notice
problems by thinking about how the program works before writing the code for it.

If you jump in to write the code first, you may discover problems that require you to change the
code you’ve already written. Every time you change your code, you are taking a chance you
create new bugs by changing too little or too much. It is much better to know what you want to
build before you build it.

88 http://inventwithpython.com

Chapter 9

HANGMAN

Topics Covered In This Chapter:

Multi-line Strings

Methods

Lists

The append() and reverse() list methods
The Tower(), upper(), split(), startswith(), and endswith() string methods
The in and not in operators

The range() and 1ist () functions

del statements

for loops

el1f statements

This chapter’s game introduces many new concepts, but don’t worry. You’ll experiment with
these programming concepts in the interactive shell first. You’ll learn about methods, which are
functions attached to values. You’ll also learn about a new type of loop called a for loop and a
new data type called a list. Once you understand these concepts, it will be much easier to program
Hangman.

Source Code of Hangman

This chapter’s game is a bit longer than the previous games, but much of it is the ASCI|I art for
the hangman pictures. Enter the following into the file editor and save it as hangman.py.

hangman. py

. import random
. HANGMANPICS = [''"'

O oo NI WN R

10. =========''', '"!

12. +--—+

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 89

13.
14.
15.
16.
17.
18.
19.
20.

22.
23.
24,
25.
26.
27.
28.
29.
30.

32.
33.
34.
35.
36.
37.
38.
39.
40.

42.
43.
44 .
45.
46.
47.
48.
49.
50.

52.
53.
54.
55.
56.
57.

I

o |
I

I

I
+--—+
(I
o |
I
I

I
+--—+
I
o |
/1
I

I
+--—+
I
o |
/IN
I

I
+--—+
(I
o |
/IN
/ I
I
+--—+
I
o |
/IN
/N
I

90

http://inventwithpython.com

59.

words = 'ant baboon badger bat bear beaver camel cat clam cobra cougar

coyote crow deer dog donkey duck eagle ferret fox frog goat goose hawk Tion
Tizard 11ama mole monkey moose mouse mule newt otter owl panda parrot pigeon
python rabbit ram rat raven rhino salmon seal shark sheep skunk sloth snake
spider stork swan tiger toad trout turkey turtle weasel whale wolf wombat
zebra'.split(Q)

60.

61. def getRandomWord(wordList):

62. # This function returns a random string from the passed 1list of
strings.

63. wordIndex = random.randint(0, len(wordList) - 1)

64. return wordList[wordIndex]

65.

66. def displayBoard(HANGMANPICS, missedLetters, correctlLetters, secretWord):
67. print (HANGMANPICS[Ten(missedLetters)])

68. print(Q)

69.

70. print('Missed letters:', end=' ')

71. for letter in missedlLetters:

72. print(letter, end="' ")

73. print()

74.

75. blanks = '_' * Ten(secretWord)

76.

77. for i in range(len(secretWord)): # replace blanks with correctly
guessed letters

78. if secretWord[i] in correctLetters:

79. blanks = blanks[:i] + secretWord[i] + blanks[i+1:]

80.

81. for letter in blanks: # show the secret word with spaces in between
each Tletter

82. print(letter, end=" ")

83. print()

84.

85. def getGuess(alreadyGuessed):

86. # Returns the Tetter the player entered. This function makes sure the
player entered a single letter, and not something else.

87. while True:

88. print('Guess a letter."')

89. guess = input()

90. guess = guess.lower()

91. if len(guess) != 1:

92. print('Please enter a single Tetter.')

93. elif guess in alreadyGuessed:

94. print('You have already guessed that Tetter. Choose again.')
95. elif guess not in 'abcdefghijkImnopgrstuvwxyz':

96. print('Please enter a LETTER."')

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 91

97. else:
98. return guess
99.
100. def playAgain(Q):
101. # This function returns True if the player wants to play again,
otherwise it returns False.
102. print('Do you want to play again? (yes or no)')
103. return input().Tower().startswith('y')
104.
105.

106. print('"H ANGMAN")

107. missedLetters = "'

108. correctLetters = "'

109. secretWord = getRandomWord(words)

110. gamelIsDone = False

111.

112. while True:

113. displayBoard (HANGMANPICS, missedlLetters, correctlLetters, secretWord)
114.

115. # Let the player type in a letter.

116. guess = getGuess(missedlLetters + correctlLetters)

117.

118. if guess in secretWord:

119. correctLetters = correctLetters + guess

120.

121. # Check if the player has won

122. foundAllLetters = True

123. for i in range(len(secretWord)):

124. if secretWord[i] not in correctlLetters:

125. foundAllLetters = False

126. break

127. if foundAllLetters:

128. print('Yes! The secret word is "' + secretWord + '"! You have
won!")

129. gameIsDone = True

130. else:

131. missedLetters = missedlLetters + guess

132.

133. # Check if player has guessed too many times and lost

134. if Ten(missedLetters) == Ten(HANGMANPICS) - 1:

135. displayBoard (HANGMANPICS, missedlLetters, correctlLetters,
secretWord)

136. print('You have run out of guesses!\nAfter ' +
str(len(missedLetters)) + ' missed guesses and ' + str(len(correctlLetters)) + '
correct guesses, the word was "' + secretWord + '"")

137. gameIsDone = True
138.

92 http://inventwithpython.com

139. # Ask the player if they want to play again (but only if the game is
done).

140. if gameIsDone:

141. if playAgain(Q):

142. missedLetters = "'

143. correctlLetters = "'

144. gameIsDone = False

145. secretWord = getRandomWord(words)

146. else:

147. break

How the Code Works

1. import random

The Hangman program randomly selected a secret word from a list of secret words. The random
module will provide this ability, so line 1 imports it.

2. HANGMANPICS = ['"''
3

4 ——

5. | |

6. |

/ |

8 |

9. |

10 . [——— , 'R}

...the rest of the code is too big to show here...

This one assignment statement stretches over lines 2 to 58 in the source code. To help you
understand what this code means, let’s learn about multi-line strings.

Multi-line Strings

So far all strings have been on one line and had one quote character at the start and end. However,
if you use three quotes at the start and end then the string can go across several lines:

>>> fizz = '''Dear Alice,

I will return to Carol's house at the end of the month. I will see you then.
Your friend,

Bob'''

>>> print(fizz)

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 93

Dear Alice,

I will return to Carol's house at the end of the month. I will see you then.
Your friend,

Bob

These are multi-line strings. In a multi-line string, the newline characters are included as part of
the string. You don’t have to use the \n escape character, or escape quotes as long as you don’t
use three of them together. This makes the code easier to read for large amounts of text.

Constant Variables

The HANGMANPICS variable’s name is in all capitals. This is the programming convention for
constant variables. Constants are variables meant to have values that never changes from their
first assignment statement. Although you can change the value in HANGMANPICS just like any other
variable, the all-caps name reminds you to not do so. Since the HANGMANPICS variable never needs
to change, it’s marked as a constant.

Like all conventions, you don’t have to follow it. But following this convention makes it easier
for other programmers to read your code. They’ll know that HANGMANPICS will always have the
value it was assigned on line 2.

Lists

A list value can contain several other values inside it. Try entering this into the interactive shell:.

>>> spam = ['Life', 'The Universe', 'Everything', 42]
>>> spam
['Life', 'The Universe', 'Everything', 42]

This list value in spam contains four values. When typing the list value into your code, it begins
with a [square bracket and ends with a] square bracket. This is like how strings begin and end
with a quote character.

Commas separate the individual values inside of a list. These values are also called items.

Indexes

Try entering animals = ['aardvark', 'anteater', 'antelope', 'albert'] into the
interactive shell to store a list in the variable animals. The square brackets are also used to access

94 http://inventwithpython.com

an item inside a list. Try entering animals[0], animals[1], animals[2], and animals[3] into
the interactive shell to see how they evaluate:

>>> animals = ['aardvark',6 'anteater', 'antelope', 'albert']
>>> animals[0]

'aardvark'

>>> animals[1]

'anteater'

>>> animals[2]

'antelope'

>>> animals[3]

'albert'

The number between the square brackets is the index. In Python, the index of the first item in a
list is 0. The second item is at index 1, the third item is at index 2, and so on. Because the indexes
begin at 0, not 1, we say that Python lists are zero-indexed.

Lists are good for storing several values without using a variable for each one. Otherwise, the
code would look like this:

>>> animalsl = 'aardvark'
>>> animals2 = 'anteater'
>>> animals3 = 'antelope'
>>> animals4 = 'albert'

This code would be hard to manage if you have hundreds or thousands of strings. But a list can
easily contain any number of values. Using the square brackets, you can treat items in the list just
like any other value. Try entering animals[0] + animals[2] into the interactive shell:

>>> animals[0] + animals[2]
'aardvarkantelope'

The evaluation looks like this:

animals[0] + animals[2]
v

'aardvark' + animals[2]
v

'aardvark' + 'antelope'
v

'aardvarkantelope'

IndexError

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 95

If you try accessing an index that is too large, you’ll get an IndexError that will crash your
program. Try entering the following into the interactive shell:

>>> animals = ['aardvark',6 'anteater', 'antelope', 'albert']
>>> animals[9999]

Traceback (most recent call last):

File "", 1ine 1, in

animals[9999]

IndexError: 1ist index out of range

Changing the Values of List Items with Index Assignment

You can also use the square brackets to change the value of an item in a list. Try entering the
following into the interactive shell:

>>> animals = ['aardvark',6 'anteater', 'antelope', 'albert']
>>> animals[1l] = "ANTEATER'

>>> animals

["aardvark', 'ANTEATER', 'antelope', 'albert']

The new "ANTEATER" string overwrites the second item in the animals list. So animals[1] will
evaluate to the list’s second item in expressions, but you can also use it on the left side of an
assignment statement to assign a value as the list’s second item.

List Concatenation

You can join lists into one list with the + operator, just like you can join strings. Joining lists with
the + operator is list concatenation. Try entering the following into the interactive shell:

>>> [1, 2, 3, 4] + ['apples', 'oranges'] + ['Alice', 'Bob']
[1, 2, 3, 4, 'apples', 'oranges', 'Alice', 'Bob']

['apples'] + ['oranges'] will evaluate to ['apples', 'oranges'].But ['apples'] +
'oranges' Will result in an error. You cannot add a list value and string value instead of two list
values. If you want to add non-list values to a list, use the append() method (described later).

The in Operator

The in operator can tell you if a value is in a list or not. Expressions that use the in operator
return a Boolean value: True if the value is in the list and False if it isn’t. Try entering the
following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> 'antelope' in animals

96 http://inventwithpython.com

{ True

The expression 'antelope' in animals returns True because the string 'antelope' is one of
the values in the animals list. It is located at index 2.

But if you type the expression 'ant' in animals, this will return False because the string
'ant' doesn’t exist in the list.

>>> animals = ['aardvark',6 'anteater', 'antelope', 'albert']
>>> 'antelope' in animals

True

>>> 'ant' in animals

False

The 1in operator also works for strings. It checks if one string exists in another. Try entering the
following into the interactive shell:

>>> 'hello' in 'Alice said hello to Bob.'
True

Deleting Items from Lists with de1 Statements

A del statement will delete an item at a certain index from a list. Try entering the following into
the interactive shell:

>>> spam = [2, 4, 6, 8, 10]
>>> del spam[1]

>>> spam

[2, 6, 8, 10]

Notice that when you deleted the item at index 1, the item that used to be at index 2 became the
new value at index 1. The item that used to be at index 3 moved to be the new value at index 2.
Everything above the deleted item moved down one index.

You can type de1 spam[1] again and again to keep deleting items from the list:

>>> spam = [2, 4, 6, 8, 10]
>>> del spam[1]

>>> spam

[2, 6, 8, 10]

>>> del spam[1]

>>> spam

[2, 8, 10]

>>> del spam[1]

>>> spam

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 97

| [2, 10]

The del statement is a statement, not a function or an operator. It doesn’t have parentheses or
evaluate to a return value.

Lists of Lists

Lists can contain other values, including other lists. Let’s say you have a list of groceries, a list of
chores, and a list of your favorite pies. You can put all three lists into another list. Try entering
the following into the interactive shell:

>>> groceries = ['eggs', 'milk', 'soup', 'apples', 'bread']
>>> chores = ['clean', 'mow the Tawn', 'go grocery shopping']
>>> favoritePies = ['apple', 'frumbleberry']

>>> 1istOfLists = [groceries, chores, favoritePies]

>>> TistOfLists

[['eggs', 'milk', 'soup', 'apples', 'bread'], ['clean', 'mow the Tawn', 'go
grocery shopping'], ['apple', 'frumbleberry']]

To get an item inside the list of lists, you would use two sets of square brackets like this:
TistOfLists[1][2] which would evaluate to the string 'go grocery shopping’.

This is because 1istOfLists[1][2] evaluatesto ['clean', 'mow the lawn', 'go grocery
shopping'][2]. That finally evaluates to 'go grocery shopping':

TistOfLists[1][2]

v
[['eggs', "milk', 'soup', 'apples', 'bread'], ['clean', 'mow the lawn', 'go
grocery shopping'], ['apple', 'frumbleberry']]1[1][2]
v
['clean', "mow the Tawn', 'go grocery shopping'][2]
v

'go grocery shopping'

Figure 9-1 is another example of a list of lists, along with some of the indexes that point to the
items. The arrows point to indexes of the inner lists themselves. The image is also flipped on its
side to make it easier to read.

Methods

Methods are functions attached to a value. For example, all string values have a Tower ()
method, which returns a copy of the string value in lowercase. You can call it like
"Hello'.lower (), which returns "hello"'. You cannot call Tower () by itself and you do not

98

http://inventwithpython.com

pass a string argument to Tower () (as in Tower ("Hello0")). You must attach the method call to a
specific string value using a period. The next section describes string methods further.

i i
-] —
| - -
> >
— —
== T ™
1 1 L Iy N
[N e BN | 1
o O O —~ ~
b [S— Sy -
> > > L4
(fao, =0, 307, [3, 2, 1]

Figure 9-1: The indexes of a list of lists.

x[2]

x[2][1]
x[2][2]

1.
—
oo
-
oo
-
oo
-

x[2][3]

5],

The 1ower0 and upper() String Methods

x[3]

[221]

=

‘[2

[[2F]

oo o

x[0][1]
x[0][2]
il

x[1][1]
x[1][2]

SroTT (2]
x[2][1]
x[2][2]
x[2][3]

Halom

Try entering 'Hello world!"'.Tower() into the interactive shell to see an example of this
method:

>>> "'Hello world!'.lower()
'hello world!'

There is also an upper () method for strings, which returns a string with all the characters in
uppercase. Try entering 'He1lo world! "' .upper() into the interactive shell:

>>> 'Hello world!'.upper()
'"HELLO WORLD! '

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 99

Because the upper () method returns a string, you can call a method on that string also. Try
entering "Hello world! " .upper().lower() into the interactive shell:

>>> 'Hello world!'.upper().Tower()
'hello world!"

"Hello world!'.upper() evaluates to the string 'HELLO WORLD!', and then string's Tower ()
method is called. This returns the string "he1lo world! "', which is the final value in the
evaluation.

'HeT1o world!"'.upper().lower()
v

"HELLO WORLD!'.Tower()
v

'hello world!"'

The order is important. '"He1lo world!"'.Tower().upper() isn’t the same as 'Hello
world!"' .upper().lower()

>>> 'Hello world!"'.Tower() .upper(Q)
"HELLO WORLD!'

That evaluation looks like this:

'HeTllo world!"'.Tower() .upper()
v

'hello world!"'.upper()
v

"HELLO WORLD!'

If a string is stored in a variable, you can call a string method on that variable. Look at this
example:

>>> spam = 'Hello world!'
>>> spam.upper()
"HELLO WORLD!'

This does not change the value in spam. The spam variable will still contain 'He11o world!".

Note that the integer and float data types don’t have any methods.

100 http://inventwithpython.com

The reverse() and append(List Methods

The list data type also has methods. The reverse() method will reverse the order of the items in
the list. Try entering spam = [1, 2, 3, 4, 5, 6, 'meow', 'woof'], andthen
spam. reverse() to reverse the list. Then enter spam to view the contents of the variable.

>>> spam = [1, 2, 3, 4, 5, 6, 'meow', 'woof']
>>> spam.reverse()
>>> spam

['woof', 'meow', 6, 5, 4, 3, 2, 1]

The most common list method you’ll use is append (). This method will add the value you pass
as an argument to the end of the list. Try entering the following into the interactive shell:

>>> eggs = []

>>> eggs.append('hovercraft')
>>> eggs

["hovercraft']

>>> eggs.append('eels"')

>>> eggs
["hovercraft', 'eels']
>>> eggs.append(42)
>>> eggs

["hovercraft', 'eels', 42]

These methods do change the lists they are called on. They don’t return a new list. We say that
these methods change the list in-place.

The sp1itO List Method

Line 59 is a long line of code, but it is really just a simple assignment statement. This line also
uses the sp1it() method, which is a method for the string data type like the Tower () and
upper () methods.

59. words = 'ant baboon badger bat bear beaver camel cat clam cobra cougar
coyote crow deer dog donkey duck eagle ferret fox frog goat goose hawk Tion
Tizard 11ama mole monkey moose mouse mule newt otter owl panda parrot pigeon
python rabbit ram rat raven rhino salmon seal shark sheep skunk sloth snake
spider stork swan tiger toad trout turkey turtle weasel whale wolf wombat
zebra'.split(Q)

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 101

This assignment statement has just one long string, full of words separated by spaces. And at the
end of the string is a sp1it() method call. The sp1it() method evaluates to a list with each
word in the string as a single list item. The “split” occurs wherever a space occurs in the string.

It is easier to type the code using sp1it (). If you created it as a list to begin with, you would
have to type: ['ant', 'baboon', 'badger',... and so on, with quotes and commas for every
word.

For example, try entering the following into the interactive shell:

>>> sentence = input()

My very energetic mother just served us nachos.

>>> sentence.split()

['My', 'very', 'energetic', 'mother', 'just', 'served',

us', 'nachos.']

The result is a list of nine strings, one string for each of the words in the original string. The
spaces are not included in any of the items in the list.

You can also add your own words to the string on line 59, or remove any you don’t want to be in
the game. Just make sure that spaces separate the words.

How the Code Works

Line 61 defines the getRandomwWord () function. A list argument will be passed for its wordList
parameter. This function will return a single secret word from the list in wordList.

61. def getRandomWord(wordList):

62. # This function returns a random string from the passed 1list of
strings.

63. wordIndex = random.randint(0, len(wordList) - 1)

64. return wordList[wordIndex]

Line 63 stores a random index for this list in the wordIndex variable. You do this by calling
randint() with two arguments. The first argument is 0 (for the first possible index) and the
second argument is the value that the expression Ten(wordList) - 1 evaluates to (for the last
possible index in awordList).

List indexes start at 0, not 1. If you have a list of three items, the index of the first item is 0, the
index of the second item is 1, and the index of the third item is 2. The length of this list is 3, but
the index 3 would be after the last index. This is why line 63 subtracts 1 from the length. The
code on line 63 will work no matter what the size of wordList is. Now you can add or remove
strings to wordList if you like.

102 http://inventwithpython.com

The wordIndex variable will be set to a random index for the list passed as the word1ist
parameter. Line 64 will return the element in wordList at the integer index stored in wordIndex.

Let’s pretend ['apple', 'orange', grape'] was passed as the argument to getRandomWord ()
and that randint (0, 2) returned the integer 2. That would mean that line 64 would evaluate to
return wordList[2], and then evaluate to return 'grape'. This is how the getRandomWord ()
returns a random string in the wordLi st list.

So the input to getRandomword () is a list of strings, and the return value output is a randomly
selected string from that list. This will be useful for the Hangman game to select a secret word for
the player to guess.

Displaying the Board to the Player

Next, you need a function to print the hangman board on the screen. It will also display how
many letters the player has correctly (and incorrectly) guessed.

66. def displayBoard(HANGMANPICS, missedLetters, correctlLetters, secretWord):
67. print (HANGMANPICS[Ten(missedLetters)])
68. print(Q)

This code defines a new function named displayBoard(). This function has four parameters:

e HANGMANPICS - A list of multi-line strings that will display the board as ASCII art. (The
global HANGMANPICS variable will be passed for this parameter.)

o missedLetters - A string of the letters the player has guessed that are not in the secret
word.

e correctlLetters - A string of the letters the player has guessed that are in the secret
word.

e secretWord — A string of the secret word that the player is trying to guess.

The first print O function call will display the board. HANGMANPICS will be a list of strings for
each possible board. HANGMANPICS[0] shows an empty gallows, HANGMANPICS[1] shows the head
(when the player misses one letter), HANGMANPICS[2] shows a head and body (when the player
misses two letters), and so on until HANGMANPICS[6] which shows the full hangman.

The number of letters in missedLetters will reflect how many incorrect guesses the player has
made. Call Ten(missedLetters) to find out this number. So, if missedLetters is 'aetr' then
len('aetr") will return 4. Printing HANGMANPICS [4] will display the appropriate hangman board
for 4 misses. This is what HANGMANPICS[Ten(missedLetters)] on line 67 evaluates to.

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 103

70. print('Missed letters:', end=' ')
71. for letter in missedLetters:

72. print(letter, end=' ')

73. print(Q

Line 70 prints the string 'Missed letters:' with a space character at the end instead of a
newline. Remember that the keyword argument end=" "' uses only one = sign (like =), not two
(like ==).

Line 71 is a new type of loop, called a for loop. A for loop often uses the range () function.
Both are explained in the next two sections.

The range() and T1istQ Functions

When called with one argument, range () will return a range object of integers from 0 up to (but
not including) the argument. This range object can be converted to the more familiar list data type
with the 1ist () function. Try entering 1ist(range(10)) into the interactive shell:

>>> list(range(10))

[0’ 1! 2! 3, 4, 5! 61 71 8’ 9]
>>> Tist('Hello")

[lHl’ le" I'II’ l'll’ lol]

The 1istQ function is similar to the str() or int() functions. It takes the value it is passed and
returns a list. It’s easy to generate huge lists with the range () function. Try entering in
1ist(range(10000)) into the interactive shell:

>>> Tist(range(10000))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
...Skipped for brevity...

...9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999]

The list is so huge, that it won’t even all fit onto the screen. But you can store the list into a
variable:

>>> spam = list(range(10000))

If you pass two integer arguments to range (), the range object it returns is from the first integer
argument up to (but not including) the second integer argument. Try entering 1ist(range (10,
20)) into the interactive shell:

>>> list(range(10, 20))
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

104 http://inventwithpython.com

The range () function is often used in for loops, which are much like the while loops you’ve
already seen.

for LOOPS

The for loop is useful for looping over a list of values. This is different from the while loop,
which loops as long as a certain condition is True. A for statement begins with the for keyword,
followed by a new variable name, followed by the in keyword, followed by an iterable value, and
ending with a colon.

An iterable is a value of the list, range, or string data types. There are also other data types that
are considered iterables which will be introduced later.

Each time the program execution iterates through the loop the new variable in the for statement
is assigned the value of the next item in the list.

>>> for i in range(5):
print('i is set to ' + str(i))

is set to
is set to
is set to
is set to
is set to

T TR T Y [
A WNREREO

The range object returned by range(5) is equivalent to the list [0, 1, 2, 3, 4] ina for
statement. The first time the execution goes through the code in the for-block, the variable i will
be set to 0. On the next iteration, i will be set to 1, and so on.

The for statement automatically converts the range object returned by range () into a list, so
there’s no need for 1ist(range(5)) in the for statement. Just use range(5).

Lists and strings are also iterable data types. You can use them in for statements. Try entering
the following into the interactive shell:

>>> for thing in ['cats', 'pasta', 'programming', 'spam']:
print('I really 1ike ' + thing)

really 1like cats

really like pasta
really 1like programming
really 1like spam

HH -

>>> for i in 'Hello':
print(i)

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 105

O — - D I -

A while Loop Equivalent of a for Loop

The for loop is similar to the while loop, but when you only need to iterate over items in a list,
using a for loop is much less code to type. This is a while loop that acts the same as the previous
for loop by adding extra code:

>>> iterableVal = ['cats', 'pasta', 'programming', 'spam']
>>> index = 0
>>> while (index < len(iterableVal)):

thing = iterableVal[index]

print('I really like ' + thing)

index = index + 1

really like cats

really like pasta
really 1like programming
really like spam

HHHH -

But using the for statement automatically does this extra code and makes programming easier
since you have less to type.

The rest of the displayBoard() function displays the missed letters and creates the string of the
secret word with all the not yet guessed letters as blanks.

70. print('Missed letters:', end=' ')
71. for letter in missedlLetters:

72. print(letter, end=" ")

73. print(Q

The for loop on line 71 will iterate over each character in the missedLetters string and print
them on the screen. Remember that the end=" " will replace the newline character that is printed
after the string with a single space character.

For example, if missedLetters was 'ajtw' this for loop would display a j t w.

106 http://inventwithpython.com

Slicing

List slicing creates a new list value with a subset of another list’s items. In code, specify two
indexes (the beginning and end) with a colon in the square brackets after a list. For example, try
entering the following into the interactive shell:

>>> spam = ['apples', 'bananas', 'carrots', 'dates']
>>> spam[1:3]
['"bananas', 'carrots']

The expression spam[1:3] evaluates to a list with items from index 1 up to (but not including)
index 3 in spam.

If you leave out the first index, Python will automatically think you want index 0 for the first
index:

>>> spam = ['apples', 'bananas', 'carrots', 'dates']
>>> spam[:2]
['appTles', 'bananas']

If you leave out the second index, Python will automatically think you want the rest of the list:

>>> spam = ['apples', 'bananas', 'carrots', 'dates']
>>> spam[2:]
['carrots', 'dates']

Slicing is a simple way to get a subset of the items in a list. You use slices with strings in the
same way you use them with lists. Each character in the string is like an item in the list. Try
entering the following into the interactive shell:

>>> myName = 'Zophie the Fat Cat'
>>> myName[4:12]

'ie the F'

>>> myName[:10]

'Zophie the'

>>> myName[7:]

'the Fat Cat'

The next part of the code in Hangman uses slicing.
Displaying the Secret Word with Blanks

Now you want code to print the secret word, but with blank lines for the letters that have not been
guessed. You can use the _ character (called the underscore character) for this. First create a

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 107

string with nothing but one underscore for each letter in the secret word. Then replace the blanks
for each letter in correctLetters.

So if the secret word was 'otter' then the blanked out string would be ' ' (five _
characters). If correctLetters was the string 'rt' you would change the stringto ' _tt_r".
Line 75 to 79 is the code that does that.

75. blanks = '_' * Ten(secretWord)

Line 75 creates the blanks variable full of _ underscores using string replication. Remember that
the * operator can also be used on a string and an integer, so the expression '_" * 5 evaluates to
' '. This will make sure that b1anks has the same number of underscores as secretWord
has letters.

77. for i in range(len(secretWord)): # replace blanks with correctly
guessed letters

78. if secretWord[i] in correctLetters:

79. blanks = blanks[:i] + secretWord[i] + blanks[i+1:]

Line 77 has a for loop to go through each letter in secretWord and replace the underscore with
the actual letter if it exists in correctLetters.

For example, pretend the value of secretWord is 'otter' and the value in correctLetters is
"tr'. You would want the string '_tt_r" displayed to the player. Let’s figure out how to create
this string.

Line 77°s Ten(secretWord) call would return 5. The range(1en(secretWord)) call becomes
range (5), which makes the for loop iterate over 0, 1, 2, 3, and 4.

Because the value of i will take on each value in [0, 1, 2, 3, 4], the code in the for loop is
the same as this:

if secretWord[0] in correctLetters:
blanks = blanks[:0] + secretWord[0] + blanks[1:]

if secretWord[1l] in correctLetters:
blanks = blanks[:1] + secretWord[1l] + blanks[2:]

if secretWord[2] in correctLetters:
blanks = blanks[:2] + secretWord[2] + blanks[3:]

if secretWord[3] in correctlLetters:
blanks = blanks[:3] + secretWord[3] + blanks[4:]

108 http://inventwithpython.com

if secretWord[4] in correctlLetters:
bTanks = blanks[:4] + secretWord[4] + blanks[5:]

If you are confused as to what the value of something like secretWord[0] or blanks[3:] is, then
look at Figure 9-2. It shows the value of the secretword and blanks variables, and the index for
each letter in the string.

blanks

secretWord o t t e r

L] 1 2 3 4

Figure 9-2: The indexes of the blanks and secretWord strings.

If you replace the list slices and the list indexes with the values that they represent, the loop code
would be the same as this:

if 'o' in 'tr': # False
blanks = '' + 'o' + ' ' # This 1ine 1is skipped.

if 't' in 'tr': # True
blanks = '"_' + "t' + ' ' # This Tine is executed.

if 't' in 'tr': # True
blanks = '"_t' + '"t' 4+ '_' # This line is executed.

if 'e' in 'tr': # False
blanks = '_tt' + 'e' + '_'" # This line is skipped.

if 'r' in 'tr': # True
blanks = "_tt_' + 'r' + "' # This line is executed.

blanks now has the value '_tt_r'

The above code examples all do the same thing when secretWord is 'otter' and
correctlLetters is 'tr'. The next few lines of code print the new value of blanks with spaces
between each letter.

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 109

81. for letter in blanks: # show the secret word with spaces in between
each Tetter

82. print(letter, end=' ')

83. print(

Get the Player’s Guess

The getGuess () function will be called so that the player can enter a letter to guess. The function
returns the letter the player guessed as a string. Further, getGuess () will make sure that the
player types a valid letter before returning from the function.

85. def getGuess(alreadyGuessed):
86. # Returns the Tetter the player entered. This function makes sure the
player entered a single letter, and not something else.

A string of the letters the player has guessed is passed as the argument for the alreadyGuessed
parameter. Then the getGuess () function asks the player to guess a single letter. This single
letter will be getGuess()’s return value.

87. while True:

88. print('Guess a letter."')
89. guess = input()

90. guess = guess.lower()

Line 87’s whiTe loop will keep asking the player for a letter until they enter text that is:
1. Asingle letter.
2. A letter they have not guessed previously.

The condition for the while loop is simply the Boolean value True. That means the only way
execution will ever leave this loop is by executing a break statement (which leaves the loop) or a
return Statement (which leaves not just the loop but the entire function).

The code inside the loop asks the player to enter a letter, which is stored in the variable guess. If
the player entered a capitalized letter, it will be overwritten with a to lowercase letter on line 90.

e1if (“Else If”) Statements

The next part of the Hangman program uses e1i f statements. You can think of e1if “else if”
statements as saying “If this is true, do this. Or else if this next condition is true, do that. Or else if
none of them are true, do this last thing.”

110 http://inventwithpython.com

Take a look at the following code:

if catName == 'Fuzzball':
print('Your cat is fuzzy.')
elif catName == 'Spots':

print('Your cat is spotted.')
else:
print('Your cat is not fuzzy or spotted.')

If the catName variable is equal to the string ' Fuzzbal1', then the i f statement’s condition is
True and the if-block tells the user that their cat is fuzzy. However, if this condition is False,
then Python tries the e14 f (“else if”’) statement’s condition next. If catName is 'Spots"', then the
'Your cat is spotted.' string is printed to the screen. If both are False, then the code tells
the user their cat isn’t fuzzy or spotted.

You can have as many e11 f statements as you want:

if catName == 'Fuzzball':
print('Your cat is fuzzy.')
elif catName == 'Spots':
print('Your cat is spotted.')
elif catName == 'Chubs':
print('Your cat is chubby."')
elif catName == 'Puff':
print('Your cat is puffy.')
else:
print('Your cat is neither fuzzy nor spotted nor chubby nor puffy.')

When one of the e14 f conditions is True, its code is executed and then execution jumps to the
first line past the else-block. So one and only one of the blocks in the if-e11f-e1se statements
will be executed. You can also leave off the e1se-block if you don’t need one, and just have 1 f-
elif statements.

Making Sure the Player Entered a Valid Guess

91. if Ten(guess) != 1:

92. print('Please enter a single Tetter.')

93. elif guess in alreadyGuessed:

94. print('You have already guessed that Tetter. Choose again.')
95. elif guess not in 'abcdefghijkImnopgrstuvwxyz':

96. print('Please enter a LETTER.')

97. else:

98. return guess

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 111

The guess variable contains player’s letter guess. The program needs to make sure they typed in
a valid guess: one and only one lowercase letter. If they didn't, the execution should loop back
and ask them for a letter again.

Line 91’s condition checks if guess is not one character long. Line 93’s condition checks if
guess already exists inside the alreadyGuessed variable. Line 95’s condition checks if guess is
not a lowercase letter.

If all of these conditions are False, then the else statement’s block executes and getGuess ()
returns the value in guess on line 98.

Remember, only one of the blocks in if-e11if-else statements will be executed.

Asking the Player to Play Again

100. def playAgain(Q):

101. # This function returns True if the player wants to play again,
otherwise it returns False.

102. print('Do you want to play again? (yes or no)')

103. return input().Tower().startswith('y')

The playAgain() function has just a print() function call and a return statement. The return
statement has an expression that looks complicated, but you can break it down. Here’s a step by
step look at how Python evaluates this expression if the user types in YES.

input().lower().startswith('y"')
v

'"YES' .Tower () .startswith('y")
v
'yes'.startswith('y")
v
True

The point of the playAgain() function is to let the player type in yes or no to tell the program if
they want to play another round of Hangman. The player should be able to type YES, yes, Y, or
anything else that begins with a “Y” in order to mean “yes”. If the player types in YES, then the
return value of input() is the string 'YES'. And 'YES'.Tower () returns the lowercase version of
the attached string. So the return value of 'YES' .Tower() is 'yes'.

But there’s the second method call, startswith('y'). This function returns True if the
associated string begins with the string parameter between the parentheses, and False if it
doesn’t. The return value of 'yes'.startswith('y") iS True.

112

http://inventwithpython.com

Now you have evaluated this expression! What it does is let the player type in a response,
lowercases the response, checks if it begins with the letter 'y, then returns True if it does and
False if it doesn’t.

On a side note, there’s also an endswith(someString) string method that will return True if the
string ends with the string in someString and False if it doesn’t. endswith() is sort of like the
opposite of startswith().

Review of the Hangman Functions

That’s all the functions we are creating for this game! Let’s review them:

getRandomWord (wordList) will take a list of strings passed to it, and return one string
from it. That is how a word is chosen for the player to guess.

displayBoard (HANGMANPICS, missedlLetters, correctLetters, secretWord) will
show the current state of the board, including how much of the secret word the player has
guessed so far and the wrong letters the player has guessed. This function needs four
parameters passed to work correctly. HANGMANPICS is a list of strings that hold the ASCII
art for each possible hangman board. correctLetters and missedLetters are strings
made up of the letters that the player has guessed that are in and not in the secret word,
respectively. And secretWord is the secret word the player is trying to guess. This
function has no return value.

getGuess(alreadyGuessed) takes a string of letters the player has already guessed and
will keep asking the player for a letter that isn’t in alreadyGuessed.) This function
returns the string of the valid letter the player guessed.

playAgain() is a function that asks if the player wants to play another round of
Hangman. This function returns True if the player does and False if the player doesn’t.

After the functions is the code for the main part of the program at line 106. Everything previous
was just function definitions and a large assignment statement for HANGMANPICS.

Setting Up the Variables

106.
107.
108.
109.
110.

print('"H ANGMAN")
missedLetters = "'
correctlLetters =
secretWord = getRandomWord(words)
gameIsDone = False

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 113

Line 106 is the first print () call that executes when the game is run. It displays the title of the
game. Next is assigning blank strings for missedLetters and correctLetters since the player
hasn’t guessed any missed or correct letters yet.

The getRandomWord(words) call will evaluate to a randomly selects word from the words list.

Line 110 sets gameIsDone to False. The code will set gameIsDone to True when it wants to
signal that the game is over and should ask the player if they want to play again.

Displaying the Board to the Player

112. while True:
113. displayBoard (HANGMANPICS, missedlLetters, correctlLetters, secretWord)

The while loop’s condition is always True, which means it will loop forever until a break
statement is encountered. (This happens later on line 147.)

Line 113 calls the displayBoard() function, passing it the list of hangman ASCII art pictures
and the three variables set on lines 107, 108, and 109. Based on how many letters the player has
correctly guessed and missed, this function displays the appropriate hangman board to the player.

Letting the Player Enter Their Guess

115. # Let the player type in a Tetter.
116. guess = getGuess(missedlLetters + correctlLetters)

The getGuess () function needs all the letters in missedLetters and correctlLetters combined,
so line 116 concatenates the strings in these variables and passes the result as the argument. This
argument is needed by getGuess () because the function has to check if the player types in a
letter that they have already guessed.

Checking if the Letter is in the Secret Word

118. if guess in secretWord:
119. correctlLetters = correctlLetters + guess

If the guess string exists in secretWord, then concatenate guess to the end of the
correctlLetters string. This string will be the new value of correctLetters.

114 http://inventwithpython.com

Checking if the Player has Won

121. # Check if the player has won

122. foundAllLetters = True

123. for i in range(len(secretWord)):

124. if secretWord[i] not in correctlLetters:
125. foundAllLetters = False

126. break

How can the program know if the player has guessed every letter in the secret word? Well,
correctlLetters has each letter that the player correctly guessed and secretword is the secret
word itself. But you can’t just check if correctLetters == secretWord because consider this
case: if secretWord was the string 'otter' and correctLetters was the string 'orte', then
correctlLetters == secretWord would be False even though the player has guessed each
letter in the secret word.

The only way you can be sure the player won is to iterate over each letter in secretWord and see
if it exists in correctLetters. If, and only if, every letter in secretWord exists in
correctLetters will the player have won.

If you find a letter in secretWord that doesn’t exist in correctLetters, you know that the player
has not guessed all the letters. The new variable foundAl1Letters is setto True on line 122
before the loop begins. The loop starts out assuming that all the letters in the secret word have
been found. But the loop’s code on line 125 will change foundA11Letters to False the first
time it finds a letter in secretWord that isn’t in correctLetters.

127. if foundAllLetters:

128. print('Yes! The secret word is "' + secretWord + '"! You have
won!")

129. gameIsDone = True

If all letters in the secret word have been found, the player is told they have won and gameIsDone
is set to True.

When the Player Guesses Incorrectly

130. else:
131. missedLetters = missedlLetters + guess

This is the start of the else-block. Remember, the code in this block will execute if the condition
was False. But which condition? To find out, point your finger at the start of the e1se keyword

Post questions to http://invpy.com/forum

Chapter 9 - Hangman 115

and move it straight up like in Figure 9-3. You’ll see that the e1se keyword's indentation is the
same as the i f keyword's indentation on line 118.

guess secretWord:
| correctletters = correctlLetters + guess
Check 1if the player has n
I foundAllletters =

Figure 9-3: The else statement is matched with the if statement at the same indentation.

So if the condition on line 118 (guess 1in secretWord) was False, then the execution moves
into this else-block.

Wrongly guessed letters are concatenated to the missedLetters string on line 131. This is like
what line 119 did for letters the player guessed correctly.

133. # Check if player has guessed too many times and lost

134. if Ten(missedLetters) == Ten(HANGMANPICS) - 1:

135. displayBoard (HANGMANPICS, missedlLetters, correctlLetters,
secretWord)

136. print('You have run out of guesses!\nAfter ' +
str(len(missedLetters)) + ' missed guesses and ' + str(len(correctLetters)) + '
correct guesses, the word was "' + secretWord + '"")

137. gameIsDone = True

Each time the player guesses wrong, the code concatenates the wrong letter to the string in
missedLetters. SO the length of missedLetters (or, in code, Ten(missedLetters)) is also the
number of wrong guesses.

The HANGMANPICS list has 7 ASCII art strings. So when Ten(missedLetters) equals 6, you know
the player has lost because the hangman picture will be finished. Remember, HANGMANPICS[0] is
the first item in the list, and HANGMANPICS[6] is the last one.

So, when the length of the missedLetters string is equal to Ten(HANGMANPICS) - 1 (that is, 6),
the player has run out of guesses. Line 136 prints the secret word and line 137 sets the
gameIsDone variable is set to True.

116 http://inventwithpython.com

139. # Ask the player if they want to play again (but only if the game is
done).

140. if gameIsDone:

141. if playAgain(Q):

142. missedLetters = "'

143. correctlLetters = "'

144. gameIsDone = False

145. secretWord = getRandomWord(words)

If the player won or lost after guessing their letter, the game should ask the player if they want to
play again. The playAgain() function handles getting a yes or no from the player, so it is called
on line 141.

If the player does want to play again, the values in missedLetters and correctLetters must be
reset to blank strings, gameIsDone t0 False, and a new secret word stored in secretWord. This
way when the execution loops back to the beginning of the while loop on line 112, the board will
be back to a fresh game.

146. else:
147. break

If the player did not type in something that began with “y” when asked if they wanted to play
again, then line 141’s condition would be False and the else-block executes. The break
statement causes the execution to jump to the first instruction after the loop. But because there are
no more instructions after the loop, the program terminates.

Summary

This has been a long chapter, and you’ve been introduced to several new concepts. But Hangman
has been our most advanced game yet. As your games get more and more complex, it’ll be a good
idea to sketch out a flow chart on paper of what happens in your program.

Lists are values that can contain other values. Methods are functions specific to a data type. Lists
have append() and reverse() methods. Strings have Tower (), upper(), sp1it(),
startswith(), and endswith() methods. You’ll learn about many more data types and methods
in the rest of this book.

The for loop is a loop that iterates over the items in a list, unlike a while loop which iterates as
long as a condition is True. The e11 f statement lets you add an “or else if” clause to the middle
of your if-el1se statements. The de1 statement can delete variables or items inside lists.

Post questions to http://invpy.com/forum

Chapter 9% - Hangman 117

Chapter 9 1>

EXTENDING HANGMAN

Topics Covered In This Chapter:

e The dictionary data type

o Key-value pairs

e The keys() and values() dictionary methods
e Multiple variable assignment

The Hangman is much bigger than the Dragon Realm program, but it’s is also more sophisticated.
It really helps to make a flow chart or small sketch to remember how you want everything to
work. Now that you’ve created a basic Hangman game, let’s look at some ways you can extend it
with new features.

After you’ve played Hangman a few times, you might think that six guesses aren't enough to get
many of the words. You can easily give the player more guesses by adding more multi-line
strings to the HANGMANPICS list.

Save your hangman.py program as hangman2.py, then add the following instructions:

59. +---—+
60. | |
61. [O [
62. /IN |
63. / \ |
64. |
65. ==========""'"' """
66. +--——+
67. | |
68. [0] [
69. /IN |
70. /N |
71. |

There are two new multi-line strings to the HANGMANPICS list, one with the hangman's left ear
drawn, and the other with both ears drawn. Because the program will tell the player they have lost
on linel34 based on Ten(missedLetters) == 1en(HANGMANPICS) - 1, this isthe only change
you must make. The rest of the program works with the new HANGMANPICS list just fine.

118 http://inventwithpython.com

You can also change the list of words by changing the words on line 59. Instead of animals, you
could have colors:

59. words = 'red orange yellow green blue indigo violet white black
brown'.split()

Or shapes:

59. words = 'square triangle rectangle circle ellipse rhombus trapezoid chevron
pentagon hexagon septagon octagon'.split()

Or fruits:

59. words = 'apple orange Temon 1lime pear watermelon grape grapefruit cherry
banana cantaloupe mango strawberry tomato'.split()

Dictionaries

With some modification, you can change the code so that the Hangman game uses sets of words,
such as animal, color, shape, or fruit. The program can tell the player which set (animal, color,
shape, or fruit) the secret word is from.

To make this change, you will need a new data type called a dictionary. A dictionary is a
collection of values like a list is. But instead of accessing the items in the dictionary with an
integer index, you can access them with an index of any data type. For dictionaries, these indexes
are called keys.

Dictionaries use { and } curly braces instead of [and] square brackets. Try entering the
following into the interactive shell:

§>>> spam = {'hello':'Hello there, how are you?', 4:'bacon', 'eggs':9999 }

The values between the curly braces are key-value pairs. The keys are on the left of the colon and
the key’s values are on the right. You can access the values like items in lists by using the key.
Try entering the following into the interactive shell:

>>> spam = {'hello':'Hello there, how are you?', 4:'bacon', 'eggs':9999}
>>> spam['hello']

'Hello there, how are you?'

>>> spam[4]

'bacon’

>>> spam[eggs]

9999

Post questions to http://invpy.com/forum

Chapter 9% - Hangman 119

Instead of putting an integer between the square brackets, you can use, say, a string key. This will
evaluate to the value for that key.

Getting the Size of Dictionaries with 1en()

You can get the number of key-value pairs in the dictionary with the Ten() function. Try entering
the following into the interactive shell:

>>> stuff = {'hello':'Hello there, how are you?', 4:'bacon', 'spam':9999}
>>> Ten(stuff)
3

The Difference Between Dictionaries and Lists

Dictionaries can have keys of any data type, not just strings. But remember, because 0 and '0"
are different values, they will be different keys. Try entering this into the interactive shell:

>>> spam = {'0':"'a string', 0:'an integer'}
>>> spam[0]

'an integer'

>>> spam['0']

'a string'

The keys in dictionaries can also be looped over using a for loop. Try entering the following into
the interactive shell.

>>> favorites = {'fruit':'apples', 'animal':'cats', 'number':42}
>>> for k in favorites:

. print(k)

fruit

number

animal

>>> for k in favorites:

.. print(favorites[k])
apples

42

cats

Dictionaries are different from lists because the values inside them are unordered. The first item
in a list named 11 stStuff would be 1istStuff[0]. But there’s no “first” item in a dictionary,
because dictionaries do not have any sort of order. Try entering the following into the interactive
shell:

§>>> favoritesl = {'fruit':"apples', 'number':42, 'animal':'cats'}

120 http://inventwithpython.com

>>> favorites2 = {'animal':'cats', 'number':42, 'fruit':'apples'}
>>> favoritesl == favorites2
True

The expression favoritesl == favorites2 evaluates to True because dictionaries are
unordered and considered equal if they have the same key-value pairs in them. Meanwhile, lists
are ordered, so two lists with the same values in a different order are not equal to each other. Try
entering this into the interactive shell:

>>> TistFavsl ['apples', 'cats', 42]
>>> listFavs2 = ['cats', 42, 'apples']
>>> listFavsl == TistFavs2

False

Dictionaries have two useful methods, keys () and values (). These will return values of a type
called dict_keys and dict_values, respectively. Much like range objects, values of those data
types are returned by the 1ist() function. Try entering the following into the interactive shell:

>>> favorites = {'fruit':'apples', 'animal':'cats', 'number':42}
>>> list(favorites.keys())
["fruit', "number', "animal'l]

>>> list(favorites.values())
['apples', 42, 'cats']

Sets of Words for Hangman

Let’s change the code in the Hangman game to support different sets of secret words. First,
replace the value assigned to words with a dictionary whose keys are strings and values are lists
of strings. The string method sp1it() will return a list of strings with one word each.

59. words = {'Colors':'red orange yellow green blue indigo violet white black
brown'.split(Q),

60. 'Shapes':'square triangle rectangle circle ellipse rhombus trapezoid
chevron pentagon hexagon septagon octagon'.split(),

61. '"Fruits':'apple orange lemon Time pear watermelon grape grapefruit cherry
banana cantaloupe mango strawberry tomato'.split(),

62. "Animals':'bat bear beaver cat cougar crab deer dog donkey duck eagle fish
frog goat leech 1ion 1lizard monkey moose mouse otter owl panda python rabbit
rat shark sheep skunk squid tiger turkey turtle weasel whale wolf wombat
zebra'.split(Q}

Lines 59 to 62 are across multiple lines in the source code, but they are still one assignment
statement. The instruction doesn’t end until the final } curly brace on line 62.

Post questions to http://invpy.com/forum

Chapter 9% - Hangman 121

The random.choice() Function

The choice() function in the random module takes a list argument and returns a random value
from it. This is similar to the what the previous getRandomwWord () function did. You’ll use
random. choice() in the new version of the getRandomWord() function.

To see how the random.choice() function works, try entering the following into the interactive
shell:

>>> import random

>>> random.choice(['cat', 'dog', 'mouse'])
'mouse’

>>> random.choice(['cat', 'dog', 'mouse'])
'cat'

>>> random.choice([2, 22, 222, 223])

2

>>> random.choice([2, 22, 222, 223])

222

Change the getRandomwWord() function so that its parameter will be a dictionary of lists of
strings, instead of just a list of strings. Here is what the function originally looked like:

61. def getRandomWord(wordList):

62. # This function returns a random string from the passed 1list of
strings.

63. wordIndex = random.randint(0, lTen(wordList) - 1)

64. return wordList[wordIndex]

Change the code in this function so that it looks like this:

64. def getRandomWord(wordDict):

65. # This function returns a random string from the passed dictionary of
Tists of strings, and the key also.

66. # First, randomly select a key from the dictionary:

67. wordKey = random.choice(list(wordDict.keys()))

68.

69. # Second, randomly select a word from the key's Tist in the dictionary:
70. wordIndex = random.randint(0, len(wordDict[wordKey]) - 1)

71.

72. return [wordDict[wordKey][wordIndex], wordKey]

The name of the wordL1ist parameter is changed to wordDict to be more descriptive. Now
instead of choosing a random word from a list of strings, first the function chooses a random key
in the wordD1i ct dictionary by calling random. choice().

122 http://inventwithpython.com

And instead of returning the string wordList[wordIndex], the function returns a list with two
items. The first item is wordDi ct [wordKey] [wordIndex]. The second item is wordKey.

Evaluating a Dictionary of Lists

The wordDict[wordKey] [wordIndex] expression on line 72 may look complicated, but it is just
an expression you can evaluate one step at a time like anything else. First, imagine that wordKey
had the value 'Fruits' (which was chosen on line 65) and wordIndex has the value 5 (chosen on
line 68). Here is how wordD1ict [wordKey] [wordIndex] would evaluate:

wordDict[wordKey] [wordIndex]

v
wordDict['Fruits'][wordIndex]

v
['apple', 'orange', 'lemon', 'lime', 'pear', 'watermelon', 'grape',
'grapefruit', 'cherry', 'banana', 'cantaloupe', 'mango', 'strawberry',
'tomato'] [wordIndex]

v
['apple', 'orange', 'lemon', 'lime', 'pear', 'watermelon', 'grape',
'grapefruit', 'cherry', 'banana', 'cantaloupe', 'mango', 'strawberry',
'tomato'] [5]

v

'watermelon'

In the above case, the item in the list this function returns would be the string 'watermelon'.
(Remember that indexes start at 0, so [5] refers to the 6 " item in the list, not the 5”‘.)

Because the getRandomword() function now returns a list of two items instead of a string,
secretWord will be assigned a list, not a string. You can assign these two items into two separate
variables using multiple assignment. This is explained next.

Multiple Assignment

Multiple assignment is a shortcut to specify multiple variables, separated by commas, on the left
side of an assignment statement. Try entering the following into the interactive shell:

>>> a, b, c = ['apples', 'cats', 42]
>>> a

'apples'

>>> b

'cats'

>>> C

42

Post questions to http://invpy.com/forum

Chapter 9% - Hangman 123

The above example is equivalent to the following assignment statements:

>>> a = ['apples', 'cats', 42][0]
>>> b ['apples', 'cats', 42][1]
>>> C ['apples', 'cats', 42][2]

You must put the same number of variables on the left side of the = assignment operator as there
are items in the list on the right side. Python will automatically assign the first item's value in the
list to the first variable, the second item's value to the second variable, and so on. But if you do
not have the same number of variables and items, the Python interpreter will give you an error.

>>> a, b, ¢, d = ['apples', 'cats', 42, 10, 'hello']
Traceback (most recent call last):
File "<pyshell#8>", Tine 1, in <module>
a, b, ¢, d = ["apples', 'cats', 42, 10, 'hello']
ValueError: too many values to unpack

>>> a, b, ¢, d = ['apples', 'cats']
Traceback (most recent call last):
File "<pyshell#9>", Tine 1, in <module>
a, b, c = ['apples', 'cats']
ValueError: need more than 2 values to unpack

Change your code in Hangman on line 109 and 145 to use multiple assignment with the return
value of getRandomWord():

108. correctlLetters = "'

109. secretWord, secretKey = getRandomWord(words)
110. gameIsDone = False
144. gameIsDone = False
145. secretWord, secretKey = getRandomWord(words)

146. else:

Printing the Word Category for the Player

The last change you’ll make is to tell the player which set of words they are trying to guess. This
way, when the player plays the game they will know if the secret word is an animal, color, shape,
or fruit. Add this line of code after line 112. Here is the original code:

112. while True:
113. displayBoard (HANGMANPICS, missedlLetters, correctlLetters, secretWord)

Add the line so your program looks like this:

124 http://inventwithpython.com

112. while True:
113. print('The secret word is in the set: + secretKey)
114. displayBoard (HANGMANPICS, missedlLetters, correctlLetters, secretWord)

Now you’re done with the changes to the Hangman program. Instead of just a single list of
strings, the secret word is chosen from many different lists of strings. The program also tells the
player which set of words the secret word is from. Try playing this new version. You can easily
change the words dictionary on line 59 to include more sets of words.

Summary

We’re done with Hangman. Even after you’ve finished writing a game, you can always add more
features after you learn more about Python programming.

Dictionaries are similar to lists except that they can use any type of value for an index, not just
integers. The indexes in dictionaries are called keys.

Multiple assignment is a shortcut to assign multiple variables the values in a list.

Hangman was fairly advanced compared to the previous games in this book. But at this point, you
know most of the basic concepts in writing programs: variables, loops, functions, and Python’s
data types such as lists and dictionaries. The later programs in this book will still be a challenge
to master, but you have finished the steepest part of the climb.

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 125

Chapter 10

Tic TAC TOE

Topics Covered In This Chapter:
o Artificial Intelligence

e List References

e Short-Circuit Evaluation

e The None Value

This chapter features a Tic Tac Toe game against a simple artificial intelligence. An artificial
intelligence (or Al) is a computer program that can intelligently respond to the player’s moves.
This game doesn’t introduce any complicated new concepts. The artificial intelligence that plays
Tic Tac Toe is really just a few lines of code.

Two people play Tic Tac Toe with paper and pencil. One player is X and the other player is O.
Players take turns placing their X or O. If a player gets three of their marks on the board in a row,
column or one of the two diagonals, they win. When the board fills up with neither player
winning, the game ends in a draw.

This chapter doesn’t introduce many new programming concepts. It makes use of our existing
programming knowledge to make an intelligent Tic Tac Toe player. Let’s get started by looking
at a sample run of the program. The player makes their move by entering the number of the space
they want to go. These numbers are in the same places as the number keys on your keyboard's
keypad (see Figure 10-2).

Sample Run of Tic Tac Toe

Welcome to Tic Tac Toe!

Do you want to be X or 07
X

The computer will go first.

126 http://inventwithpython.com

What is your next move? (1-9)

0 | | O
(I
(.

X
(.
(.

0 | | X

01010
I
I

X | X |
I
I

ol |X

The computer has beaten you! You Tose.
Do you want to play again? (yes or no)
ho

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 127

Source Code of Tic Tac Toe

In a new file editor window, type in the following source code and save it as tictactoe.py. Then
run the game by pressing F5.

tictactoe.py

1. # Tic Tac Toe
2.
3. dimport random
4.
5. def drawBoard(board):
6. # This function prints out the board that it was passed.
7.
8. # "board" is a Tist of 10 strings representing the board (ignore index
0)
9. print(’ | D)
10. print('" ' + board[7] + ' ' + board[8] + ' ' + board[9])
11. print(’ | D)
12. print('-------—---- "
13. print(’ | D)
14. print('" ' + board[4] + ' ' + board[5] + ' ' + board[6])
15. print(’ | D)
16. print('-----—-————-—- D)
17. print(’ | D)
18. print(" ' + board[1] + ' | ' + board[2] + ' | ' + board[3])
19. print(’ | D)
20.
21. def inputPlayerLetter():
22. # Lets the player type which letter they want to be.
23. # Returns a Tist with the player’s letter as the first item, and the
computer's Tetter as the second.
24, letter = "'
25. while not (letter == 'X' or letter == '0'):
26. print('Do you want to be X or 0?')
27. Tetter = input(Q) .upper(Q)
28.
29. # the first element in the Tist is the player’s letter, the second is
the computer's Tetter.
30. if letter == 'X':
31. return ['X', '0']
32. else:
33. return ['0', 'X']
34.
35. def whoGoesFirst():
36. # Randomly choose the player who goes first.

37. if random.randint(0, 1) ==

128

http://inventwithpython.com

38.
39.
40.
41.
42.
43.

def

return 'computer'
else:
return 'player'

playAgain():
This function returns True if the player wants to play again,

otherwise it returns False.

44.
45.
46.
47.
48.
49.
50.
51.

def

def

print('Do you want to play again? (yes or no)')
return input().Tower().startswith('y')

makeMove(board, letter, move):
board[move] = Tetter

isWinner(bo, le):
Given a board and a player’s letter, this function returns True if

that player has won.

52.

We use bo instead of board and Te instead of letter so we don’t have

to type as much.

53.

top

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64 .
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.

def

def

def

return ((bo[7] == Te and bo[8] == Te and bo[9] == le) or # across the

across the middle
across the bottom
down the left side
down the middle
down the right side
diagonal

iagonal

(bo[4] == 1e and bo[5] == le and bo[6] == 1le) or
(bo[1] == Te and bo[2] == le and bo[3] == 1e) or
(bo[7] == 1e and bo[4] == le and bo[1l] == 1e) or
(bo[8] == 1le and bo[5] == le and bo[2] == 1e) or
(bo[9] == le and bo[6] == le and bo[3] == le) or
(bo[7] == le and bo[5] == le and bo[3] == le) or
(bo[9] == 1le and bo[5] == le and bo[1l] == Te)) #

O H H H W H W

getBoardCopy(board):
Make a duplicate of the board Tist and return it the duplicate.
dupeBoard = []

for i in board:
dupeBoard.append(i)

return dupeBoard

isSpaceFree(board, move):
Return true if the passed move is free on the passed board.
return board[move] == " '

getPlayerMove(board) :

Let the player type in their move.

move = ' '

while move not in '1 2 3456 7 8 9'.split() or not

isSpaceFree(board, int(move)):

79.

print('What is your next move? (1-9)')

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 129

80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.

def

def

move = input()
return int(move)

chooseRandomMoveFromList(board, movesList):
Returns a valid move from the passed Tist on the passed board.
Returns None if there is no valid move.
possibleMoves = []
for i in moveslList:
if isSpaceFree(board, i):
possibleMoves.append(i)

if len(possibleMoves) != 0:

return random.choice(possibleMoves)
else:

return None

getComputerMove(board, computerlLetter):
Given a board and the computer's letter, determine where to move and

return that move.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124,
125.

if computerLetter == 'X':
playerLetter = 'O’
else:
playerLetter = 'X'

Here is our algorithm for our Tic Tac Toe AI:
First, check if we can win in the next move
for i in range(l, 10):
copy = getBoardCopy(board)
if isSpaceFree(copy, i):
makeMove(copy, computerlLetter, i)
if isWinner(copy, computerLetter):
return i

Check if the player could win on their next move, and block them.
for i in range(1, 10):
copy = getBoardCopy(board)
if isSpaceFree(copy, i):
makeMove(copy, playerlLetter, i)
if isWinner(copy, playerLetter):
return i

Try to take one of the corners, if they are free.
move = chooseRandomMoveFromList(board, [1, 3, 7, 91)
if move != None:

return move

Try to take the center, if it is free.

130 http://inventwithpython.com

126. if isSpaceFree(board, 5):

127. return 5

128.

129. # Move on one of the sides.

130. return chooseRandomMoveFromList(board, [2, 4, 6, 8])
131.

132. def isBoardFull(board):

133. # Return True if every space on the board has been taken. Otherwise
return False.

134. for i in range(l, 10):

135. if isSpaceFree(board, i):

136. return False

137. return True

138.

139.

140. print('Welcome to Tic Tac Toe!")

141.

142. while True:

143. # Reset the board

144. theBoard = [' '] * 10

145. playerLetter, computerLetter = inputPlayerlLetter()
146. turn = whoGoesFirst()

147. print('The ' + turn + ' will go first.")

148. gameIsPlaying = True

149.

150. while gameIsPlaying:

151. if turn == 'player':

152. # Player’s turn.

153. drawBoard(theBoard)

154. move = getPlayerMove(theBoard)

155. makeMove(theBoard, playerlLetter, move)
156.

157. if isWinner(theBoard, playerLetter):

158. drawBoard(theBoard)

159. print('Hooray! You have won the game!")
160. gameIsPlaying = False

161. else:

162. if isBoardFull(theBoard):

163. drawBoard(theBoard)

164. print('The game is a tie!')

165. break

166. else:

167. turn = 'computer'

168.

169. else:

170. # Computer’s turn.

171. move = getComputerMove(theBoard, computerlLetter)

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 131

172. makeMove (theBoard, computerlLetter, move)
173.

174. if isWinner(theBoard, computerLetter):
175. drawBoard(theBoard)

176. print('The computer has beaten you! You lose.')
177. gameIsPlaying = False

178. else:

179. if isBoardFull(theBoard):

180. drawBoard(theBoard)

181. print('The game is a tie!')

182. break

183. else:

184. turn = 'player’

185.

186. if not playAgain(Q):

187. break

Designing the Program

Figure 10-1 is what a flow chart of Tic Tac Toe could look like. In the Tic Tac Toe computer
program the player chooses if they want to be X or O. Who takes the first turn is randomly
chosen. Then the player and computer take turns making moves.

The boxes on the left side of the flow chart are what happens during the player’s turn. The right
side shows what happens on the computer's turn. After the player or computer makes a move, the
program checks if they won or caused a tie, and then the game switches turns. After the game is
over, the program asks the player if they want to play again.

132 http://inventwithpython.com

START

sk for Decide who
player’s letter, goes first

Vluyer'\ Turn

Cornpuh‘ir s Turn

Get computer's
move,

Get plaver’s move.

Check if
computer won,

Creck
plu\(Er Won,

Check for +ie.

Check for +ie,

Fsx player +o
play again.

Figure 10-1: Flow chart for Tic Tac Toe

~
€
o

= |
)
(o))

Figure 10-2: The board is numbered like the keyboard's number pad.

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 133

Representing the Board as Data

First, you must figure out how to represent the board as data in a variable. On paper, the Tic Tac
Toe board is drawn as a pair of horizontal lines and a pair of vertical lines, with either an X, O, or
empty space in each of the nine spaces.

In the program, the Tic Tac Toe board is represented as a list of strings. Each string will represent
one of the nine spaces on the board. To make it easier to remember which index in the list is for
which space, they will mirror the numbers on a keyboard’s number keypad, as shown in Figure
10-2.

The strings will either be ' X" for the X player, '0" for the O player, or a single space ' ' for a
blank space.

So if a list with ten strings was stored in a variable named board, then board[7] would be the
top-left space on the board. board[5] would be the center. board[4] would be the left side space,
and so on. The program will ignore the string at index 0 in the list. The player will enter a number
from 1 to 9 to tell the game which space they want to move on.

Game Al

The Al needs to be able to look at a board and decide which types of spaces it will move on. To
be clear, we will label three types of spaces on the Tic Tac Toe board: corners, sides, and the
center. Figure 10-3 is a chart of what each space is.

Figure 10-3: Locations of the side, corner, and center places.

134 http://inventwithpython.com

The AI’s smarts for playing Tic Tac Toe will follow a simple algorithm. An algorithm is a finite
series of instructions to compute a result. A single program can make use of several different
algorithms. An algorithm can be represented with a flow chart. The Tic Tac Toe AI’s algorithm
will compute the best move to make, as shown in Figure 10-4.

The AI’s algorithm will have the following steps:

1. First, see if there’s a move the computer can make that will win the game. If there is, take
that move. Otherwise, go to step 2.

2. See if there’s a move the player can make that will cause the computer to lose the game.
If there is, move there to block the player. Otherwise, go to step 3.

3. Check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. If so, move there. If no
corner piece is free, then go to step 4.

4. Check if the center is free. If so, move there. If it isn’t, then go to step 5.

5. Move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps, because if
the execution reaches step 5 the side spaces are the only spaces left.

This all takes place in the “Get computer's move.” box on the flow chart in Figure 10-1. You
could add this information to the flow chart with the boxes in Figure 10-4.

I. Make winNing move. I

2. Block player's wiNnNing move.

L

3. Move on L_Orner.J

¥

4. Move on center.

L

5. Move on side. !

Figure 10-4: The five steps of the “Get computer's move” algorithm. The arrows leaving go to
the “Check if computer won” box.

(

[

[

[

A

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 135

This algorithm is implemented in the getComputerMove () function and the other functions that
getComputerMove() calls.

The Start of the Program

1. # Tic Tac Toe
2.
3. import random

The first couple of lines are a comment and importing the random module so you can call the
randint () function.

Printing the Board on the Screen

5. def drawBoard(board):
6. # This function prints out the board that it was passed.
7.
8. # "board" is a list of 10 strings representing the board (ignore index
0)
9. print(’ | D)
10. print('" ' + board[7] + ' " + board[8] + ' ' + board[9])
11. print(’ [[
12. print('----------- "
13. print(’ | D)
14. print(" ' + board[4] + ' | ' + board[5] + ' | ' + board[6])
15. print(’ | D)
16. print('-----—-————-—- D)
17. print(’ [[
18. print(' ' + board[1] + ' ' + board[2] + ' ' + board[3])
19. print(’ | D)

The drawBoard() function will print the game board represented by the board parameter.
Remember that the board is represented as a list of ten strings, where the string at index 1 is the
mark on space 1 on the Tic Tac Toe board, and so on. The string at index 0 is ignored. Many of
the game’s functions will work by passing a list of ten strings as the board.

Be sure to get the spacing right in the strings, otherwise the board will look funny when printed
on the screen. Here are some example calls (with an argument for board) to drawBoard() and
what the function would print:

>>> drawBoard([' ', " ', " ', " ', 'X', 'O', "', 'X', "', '0']

| |
X | | O
| |

136 http://inventwithpython.com

I
X 10|
I I
I I
I I
I I
>>> [*" ', '0', 0", ", VXY, r]
I I
I I
I I
I I
I X |
I I
I I
0|0
I I
>> [,y r s r s rr]
I I
I I
I I
I I
I I
I I
I I
I I
I I
Letting the Player be X or O
21. def 1inputPlayerLetter():
22. # Lets the player type which letter they want to be.
23. # Returns a list with the player’s letter as the first item, and the
computer's Tetter as the second.
24. letter = "'
25. while not (letter == 'X' or letter == '0'):
26. print('Do you want to be X or 07')
27. Tetter = input(Q) .upper(Q)

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 137

The inputPlayerLetter() function asks if the player wants to be X or O. It will keep asking the
player until the player types in an X or O. Line 27 automatically changes the string returned by
the call to input) to uppercase letters with the upper () string method.

The while loop’s condition contains parentheses, which means the expression inside the
parentheses is evaluated first. If the Tetter variable was set to 'X", the expression would
evaluate like this:

not (lTetter == 'X' or letter == '0")
v
not ('X' == 'X' or 'X' = '0")
v
not (True or False)
v
not (True)
v
not True
v
False

If Tetter has the value 'X' or '0', then the loop’s condition is False and lets the program
execution continue past the while-block.

29. # the first element in the Tist is the player’s letter, the second is
the computer's Tletter.

30. if letter == 'X':

31. return ['X', '0']

32. else:

33. return ['0', 'X']

This function returns a list with two items. The first item (the string at index 0) is the player’s
letter, and the second item (the string at index 1) is the computer's letter. These if-else
statements chooses the appropriate list to return.

Deciding Who Goes First

35. def whoGoesFirst():

36. # Randomly choose the player who goes first.
37. if random.randint(0, 1) ==

38. return 'computer'

39. else:

40. return 'player’

138 http://inventwithpython.com

The whoGoesFirst() function does a virtual coin flip to determine whether the computer or the
player goes first. The coin flip is in calling random. randint(0, 1). If this function call returns a
0, the whoGoesFirst() function returns the string ' computer'. Otherwise, the function returns
the string 'player'. The code that calls this function will use the return value to know who will
make the first move of the game.

Asking the Player to Play Again

42. def playAgain(Q):

43. # This function returns True if the player wants to play again,
otherwise it returns False.

44 print('Do you want to play again? (yes or no)')

45, return input().lower().startswith('y")

The playAgain() function asks the player if they want to play another game. The function
returns True if the player typesin 'yes', 'YES', 'y', or anything that begins with the letter Y.
For any other response, the function returns False. This function is identical to the one in the
Hangman game.

Placing a Mark on the Board

47. def makeMove(board, letter, move):
48. board[move] = letter

The makeMove () function is simple and only one line. The parameters are a list with ten strings
named board, one of the player’s letters (either 'X' or '0') named letter, and a place on the
board where that player wants to go (which is an integer from 1 to 9) named move.

But wait a second. This code seems to change one of the items in the board list to the value in
letter. But because this code is in a function, the board parameter will be forgotten when the
function returns. Shouldn’t the change to board be forgotten as well?

Actually, this isn’t the case. This is because lists are special when you pass them as arguments to
functions. You are actually passing a reference of the list and not the list itself. Let’s learn about
the difference between lists and references to lists.

References

Try entering the following into the interactive shell:

>>> spam = 42
>>> cheese = spam

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 139

>>> spam = 100
>>> spam

100

>>> cheese

42

These results make sense from what you know so far. You assign 42 to the spam variable, and
then assign the value in spam and to the variable cheese. When you later overwrite spam to 100,
this doesn’t affect the value in cheese. This is because spam and cheese are different variables
that store different values.

But lists don’t work this way. When you assign a list to a variable with the = sign, you are
actually assigning a list reference to the variable. A reference is a value that points to some bit of
data. Here is some code that will make this easier to understand. Type this into the interactive
shell:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = spam

>>> cheese[1l] = 'Hello!'

>>> spam

[0, 'Hello!', 2, 3, 4, 5]

>>> cheese

[0, 'Hello!', 2, 3, 4, 5]

This looks odd. The code only changed the cheese list, but it seems that both the cheese and
spam lists have changed. This is because the spam variable does not contain the list value itself,
but rather spam contains a reference to the list as shown in Figure 10-5. The actual list itself is not
contained in any variable, but rather exists outside of them.

@ spam = [0, 1, 2, 3, 4, 5]

\ @ list valued

[0, 1,2, 3,4, 5]

Reference

Figure 10-5: Variables don’t store lists, but rather references to lists.

140 http://inventwithpython.com

Notice that cheese = spam copies the list reference in spam to cheese, instead of copying the list
value itself. Now both spam and cheese store a reference that refers to the same list value. But
there is only one list. The list was not copied, the reference to the list was copied. Figure 10-6
shows this copying.

@ cheese = spam

l(a list value)

[0,1,2,3,4,5]

Reference

Figure 10-6: Two variables store two references to the same list.

So the cheese[1] = 'Hello!" line changes the same list that spam refers to. This is why spam
seems to have the same list value that cheese does. They both have references that refer to the
same list, as shown in Figure 10-7.

@ cheese[1] = ‘Hello’

(o list value)
[0, 'Hello, 2, 3, 4, 5]

Reference 2

Figure 10-7: Changing the list changes all variables with references to that list.

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 141

If you want spam and cheese to store two different lists, you have to create two different lists
instead of copying a reference:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]

In the above example, spam and cheese have two different lists stored in them (even though these
lists are identical in content). Now if you modify one of the lists, it won’t affect the other because
spam and cheese have references to two different lists:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]
>>> cheese[1l] = 'Hello!'

>>> spam

[o, 1, 2, 3, 4, 5]

>>> cheese

[0, 'Hello!', 2, 3, 4, 5]

Figure 10-8 shows how the two references point to two different lists.

) @ list value)
[0, 1, 2, 3, 4, 5]

V(@ list value)
[0, 'Hello', 2, 3, 4, 5]

Figure 10-8: Two variables each storing references to two different lists.

Dictionaries also work the same way. Variables don’t store dictionaries, they store references to
dictionaries.

142 http://inventwithpython.com

Using List References in makeMove()

Let’s go back to the makeMove () function:

47. def makeMove(board, letter, move):
48. board[move] = Tetter

When a list value is passed for the board parameter, the function's local variable is really a copy
of the reference to the list, not a copy of the list. But a copy of the reference still refers to the
same list the original reference refers. So any changes to board in this function will also happen
to the original list. Even though board is a local variable, the makeMove () function modifies the
original list.

The Tetter and move parameters are copies of the string and integer values that you pass. Since
they are copies of values, if you modify Tetter or move in this function, the original variables
you used when you called makeMove () aren’t modified.

Checking if the Player Has Won

50. def isWinner(bo, Te):

51. # Given a board and a player’s letter, this function returns True if
that player has won.

52. # We use bo instead of board and Te instead of Tetter so we don’t have
to type as much.

53. return ((bo[7] == Te and bo[8] == le and bo[9] == 1le) or # across the
top

54. (bo[4] == le and bo[5] == le and bo[6] == 1e) or # across the middle

55. (bo[1] == le and bo[2] == le and bo[3] == 1e) or # across the bottom

56. (bo[7] == 1e and bo[4] == le and bo[1l] == 1le) or # down the Tleft side

57. (bo[8] == 1le and bo[5] == le and bo[2] == 1e) or # down the middle

58. (bo[9] == le and bo[6] == Te and bo[3] == 1le) or # down the right side

59. (bo[7] == 1e and bo[5] == le and bo[3] == 1e) or # diagonal

60. (bo[9] == Te and bo[5] == le and bo[1l] == 1e)) # diagonal

Lines 53 to 60 in the iswinner () function are actually one long return statement. The bo and Te
names are shortcuts for the board and Tetter parameters. These shorter names mean you have
less to type in this function. Remember, Python doesn’t care what you name your variables.

There are eight possible ways to win at Tic Tac Toe. You can have a line across the top, middle,
and bottom rows. Or you can have a line down the left, middle, or right columns. Or you can have
a line over either of the two diagonals.

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 143

Note that each line of the condition checks if the three spaces are equal to the letter provided
(combined with the and operator) and you use the or operator to combine the eight different ways
to win. This means only one of the eight ways must be true in order for us to say that the player
who owns letter in Te is the winner.

Let’s pretend that 1eis '0' and bois [' ', 'O', 'O', 'O', " ', 'X', " ', 'X", "',
']1. The board looks like this:

Here is how the expression after the return keyword on line 53 would evaluate:

53. return ((bo[7] == Te and bo[8] == Te and bo[9] == 1e) or # across the
top

54. (bo[4] == le and bo[5] == le and bo[6] == 1e) or # across the middle
55. (bo[1] == le and bo[2] == le and bo[3] == 1e) or # across the bottom
56. (bo[7] == Te and bo[4] == 1e and bo[1l] == 1e) or # down the left side
57. (bo[8] == 1le and bo[5] == 1le and bo[2] == Te) or # down the middle

58. (bo[9] == 1e and bo[6] == Te and bo[3] == 1e) or # down the right side
59. (bo[7] == Te and bo[5] == le and bo[3] == Te) or # diagonal

60. (bo[9] == 1e and bo[5] == Te and bo[1l] == 1e)) # diagonal

First Python will replace the variables bo and 1e with the value inside of them:

return (('X' == '0' and ' ' = '0' and ' ' = '0') or
(" "= "0"and 'X' == '0" and ' ' == '0') or

('0" == '0" and '0' == '0" and '0' == '0") or

('X'" == '0" and ' " == '0" and '0' == '0') or

(" " = "'0" and 'X' == '0' and '0' == '0') or

(" " =="0"and ' ' == '0" and '0' == '0") or

('X'" == '0" and 'X' == '0' and '0' == '0') or

(" " =="0"and 'X' == '0' and '0' == '0"))

Next, Python will evaluate all those == comparisons inside the parentheses to a Boolean value:

return ((False and False and False) or

144 http://inventwithpython.com

(False and False and False) or
(True and True and True) or

(False and False and True) or
(False and False and True) or
(False and False and True) or
(False and False and True) or
(False and False and True))

Then the Python interpreter will evaluate all those expressions inside the parentheses:

return ((False) or
(False) or

(True) or

(False) or

(False) or

(False) or

(False) or
(False))

Since now there’s only one value inside the parentheses, you can get rid of them:

return (False or
False or

True or

False or

False or

False or

False or

False)

Now evaluate the expression that is connecter by all those or operators:

return (True)

Once again, get rid of the parentheses, and you are left with one value:

return True

So given those values for bo and 1e, the expression would evaluate to True. This is how the
program can tell if one of the players has won the game.

Duplicating the Board Data

62. def getBoardCopy(board):

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 145

63. # Make a duplicate of the board Tlist and return it the duplicate.
64. dupeBoard = []

65.

66. for i in board:

67. dupeBoard.append (i)

68.

69. return dupeBoard

The getBoardCopy () function is here so that you can easily make a copy of a given 10-string list
that represents a Tic Tac Toe board in the game. There are times that you’ll want the Al
algorithm to make temporary modifications to a temporary copy of the board without changing
the original board. In that case, call this function to make a copy of the board's list. The new list is
created on line 64, with the blank list brackets [].

But the list stored in dupeBoard on line 64 is just an empty list. The for loop will iterate over the
board parameter, appending a copy of the string values in the original board to the duplicate
board. Finally, after the loop, dupeBoard is returned. The getBoardCopy () function builds up a
copy of the original board and returning a reference to this new board in dupeBoard, and not the
original one in board.

Checking if a Space on the Board is Free

71. def isSpaceFree(board, move):
72. # Return true if the passed move is free on the passed board.
73. return board[move] == "' '

This is a simple function that, given a Tic Tac Toe board and a possible move, will return if that
move is available or not. Remember that free spaces on the board lists are marked as a single
space string. If the item at the space’s index is not equal to, then the space is taken.

Letting the Player Enter Their Move

75. def getPlayerMove(board):

76. # Let the player type in their move.

77. move = ' '

78. while move not in '1 23 456 7 8 9'.split() or not
isSpaceFree(board, int(move)):

79. print('What is your next move? (1-9)')

80. move = input()

81. return int(move)

146 http://inventwithpython.com

The getPlayerMove () function asks the player to enter the number for the space they want to
move on. The loop makes sure the execution does not continue until the player has entered an
integer from 1 to 9. It also checks that the space entered isn’t already taken, given the Tic Tac
Toe board passed to the function for the board parameter.

The two lines of code inside the while loop simply ask the player to enter a number from 1 to 9.
The condition on line 78 is True if either of the expressions on the left or right side of the or
operator is True.

The expression on the left side checks if the player’s move is equal to *1', '2', '3, and so on up
to '9' by creating a list with these strings (with the sp1it() method) and checking if move is in
this list.

'1234567 8 9'.splitQ evaluatesto['1', '2', '3', '4', '5', '6', '7', '8,
'9'], but the former easier to type.

The expression on the right side checks if the move that the player entered is a free space on the
board. It checks this by calling the isSpaceFree () function. Remember that isSpaceFree () will
return True if the move you pass is available on the board. Note that i sSpaceFree () expects an
integer for move, so the int () function returns an integer form of move.

The not operators are added to both sides so that the condition is True when either of these
requirements are unfulfilled. This will cause the loop to ask the player again and again until they
enter a proper move.

Finally, line 81 returns the integer form of whatever move the player entered. Remember that

input () returns strings, so the int() function is called to return an integer form of the string.

Short-Circuit Evaluation

You may have noticed there’s a possible problem in the getP1ayerMove () function. What if the
player typed in 'Z' or some other non-integer string? The expression move not in '1 2 3 4 5
6 7 8 9'.split() on the left side of or would return False as expected, and then Python would
evaluate the expression on the right side of the or operator.

But calling int('z') would cause an error. Python gives this error because the int () function
can only take strings of number characters, like '9' or '0', not strings like 'z".

As an example of this kind of error, try entering this into the interactive shell:

>>> int('42")

42

>>> int('Z")

Traceback (most recent call last):

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 147

File "<pyshell#3>", Tine 1, in <module>
int('Z")
ValueError: invalid 1iteral for int() with base 10: 'Z'

But when you play the Tic Tac Toe game and try entering 'Z* for your move, this error doesn’t
happen. The reason is because the while loop’s condition is being short-circuited.

Short-circuiting means is that since the part on the left side of the or keyword (move not in '1
234567 89'.split()) evaluates to True, the Python interpreter knows that the entire
expression will evaluate to True. It doesn’t matter if the expression on the right side of the or
keyword evaluates to True or False, because only one value on the side of the or operator needs
to be True.

Think about it: The expression True or False evaluates to True and the expression True or
True also evaluates to True. If the value on the left side is True, it doesn’t matter what the value
is on the right side:

False and <<<anything>>> always evaluates to False
True or <<<anything>>> always evaluates to True

So Python stops checking the rest of the expression and doesn’t even bother evaluating the not
isSpaceFree(board, int(move)) part. This means the int() and the isSpaceFree() functions
are never called as long as move not in '1 2 3 456 7 8 9'.split() is True.

This works out well for the program, because if the right side is True then move isn’t a string in
number form. That would cause int() to give us an error. The only times move not in '1 2 3
456 7 8 9'.split() evaluates to False are when move isn’t a single-digit string. In that case,
the call to int () would not give us an error.

An Example of Short-Circuit Evaluation

Here’s a short program that gives a good example of short-circuiting. Try entering the following
into the interactive shell:

>>> def ReturnsTrue():
print('ReturnsTrue() was called.')
return True

>>> def ReturnsFalse():
print('ReturnsFalse() was called."')
return False

>>> ReturnsTrue()
ReturnsTrue() was called.

148 http://inventwithpython.com

True

>>> ReturnsFalse()
ReturnsFalse() was called.
False

When ReturnsTrue() is called, it prints 'ReturnsTrue() was called.' and then also displays
the return value of ReturnsTrue(). The same goes for ReturnsFalse().

Now try entering the following into the interactive shell.

>>> ReturnsFalse() or ReturnsTrue()
ReturnsFalse() was called.
ReturnsTrue() was called.

True

>>> ReturnsTrue() or ReturnsFalse()
ReturnsTrue() was called.

True

The first part makes sense: The expression ReturnsFalse() or ReturnsTrue() calls both of the
functions, so you see both of the printed messages.

But the second expression only shows 'ReturnsTrue() was called.' but not
'ReturnsFalse() was called.'. This is because Python did not call ReturnsFalse() at all.
Since the left side of the or operator is True, it doesn’t matter what ReturnsFalse() returns and
Python doesn’t bother calling it. The evaluation was short-circuited.

The same applies for the and operator. Try entering the following into the interactive shell:

>>> ReturnsTrue() and ReturnsTrue()
ReturnsTrue() was called.
ReturnsTrue() was called.

True

>>> ReturnsFalse() and ReturnsFalse()
ReturnsFalse() was called.

False

If the left side of the and operator is False, then the entire expression is False. It doesn’t matter
whether the right side of the and operator is True or False, so Python doesn’t bother evaluating
it. Both False and True and False and False evaluate to False, so Python short-circuits the
evaluation.

Choosing a Move from a List of Moves

83. def chooseRandomMoveFromList(board, movesList):
84. # Returns a valid move from the passed Tist on the passed board.

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 149

85. # Returns None if there is no valid move.
86. possibleMoves = []

87. for i in movesList:

88. if isSpaceFree(board, i):

89. possibleMoves.append(i)

The chooseRandomMoveFromList () function is useful for the Al code later in the program. The
board parameter is a list of strings that represents a Tic Tac Toe board. The second parameter
movesList is a list of integers of possible spaces from which to choose. For example, if
movesListis [1, 3, 7, 9], that means chooseRandomMoveFromList() should return the
integer for one of the corner spaces.

However, chooseRandomMoveFromList() will first check that the space is valid to make a move
on. The possibleMoves list starts as a blank list. The for loop will iterate over movesList. The

moves that cause isSpaceFree() to return True are added to possibleMoves with the append ()
method.

91. if len(possibleMoves) != 0:

92. return random.choice(possibleMoves)
93. else:

94. return None

At this point, the possibleMoves list has all of the moves that were in movesList that are also
free spaces. If the list isn’t empty, then there’s at least one possible move that can be made on the
board.

But this list could be empty. For example, if movesList was [1, 3, 7, 9] but the board
represented by the board parameter had all the corner spaces already taken, the possibleMoves
list would be []. In that case, Ten(possibleMoves) will evaluate to 0 and the function returns the
value None. This next section explains the None value.

The none Value

The None value is a value that represents the lack of a value. None is the only value of the data
type NoneType. It can be useful to use the None value when you need a value that means “does
not exist” or “none of the above”.

For example, say you had a variable named quizAnswer which holds the user’s answer to some
True-False pop quiz question. The variable could hold True or False for the user’s answer. You
could set quizAnswer to None if the user skipped the question and didn’t answer it. Using None
would be better because otherwise it may look like the user answered the question when they
didn't.

150 http://inventwithpython.com

Functions that return by reaching the end of the function (and not from a return statement) have
None for a return value. The None value is written without quotes and with a capital “N” and
lowercase “one”.

As a side note, None will not be displayed in the interactive shell like other values will be:

>>> 2 + 2

4

>>> 'This is a string value.'
'This is a string value.'

>>> None

Functions that don’t seem to return anything actually return the None value. For example,
print() returns None:

>>> spam = print('Hello world!")
Hello world!

>>> spam == None

True

Creating the Computer’s Artificial Intelligence

96. def getComputerMove(board, computerlLetter):

97. # Given a board and the computer's letter, determine where to move and
return that move.

98. if computerLetter == 'X':

99. playerLetter = 'O’

100. else:

101. playerLetter = 'X'

The getComputerMove () function contains the AI’s code. The first argument is a Tic Tac Toe
board for the board parameter. The second argument is letter for the computer either 'X" or '0'
in the computerLetter parameter. The first few lines simply assign the other letter to a variable
named playerLetter. This way the same code can be used whether the computer is X or O.

The function will returns an integer from 1 to 9 representing the computer’s move.
Remember how the Tic Tac Toe Al algorithm works:

o First, see if there’s a move the computer can make that will win the game. If there is, take
that move. Otherwise, go to the second step.

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 151

e Second, see if there’s a move the player can make that will cause the computer to lose the
game. If there is, the computer should move there to block the player. Otherwise, go to
the third step.

e Third, check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. If no corner space
is free, then go to the fourth step.

e Fourth, check if the center is free. If so, move there. If it isn’t, then go to the fifth step.

o Fifth, move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps,
because if the execution has reached this step then the side spaces are the only spaces left.

The Computer Checks if it Can Win in One Move

103. # Here is our algorithm for our Tic Tac Toe AI:
104. # First, check if we can win in the next move
105. for i in range(l, 10):

106. copy = getBoardCopy(board)

107. if isSpaceFree(copy, i):

108. makeMove(copy, computerlLetter, i)

109. if isWinner(copy, computerLetter):

110. return i

More than anything, if the computer can win in the next move, the computer should make that
winning move immediately. The for loop that starts on line 105 iterates over every possible
move from 1 to 9. The code inside the loop will simulate what would happen if the computer
made that move.

The first line in the loop (line 106) makes a copy of the board list. This is so the simulated move
inside the loop doesn’t modify the real Tic Tac Toe board stored in the board variable. The
getBoardCopy () returns an identical but separate board list value.

Line 107 checks if the space is free and if so, simulates making the move on the copy of the
board. If this move results in the computer winning, the function returns that move’s integer.

If none of the spaces results in winning, the loop will finally end and the program execution
continues to line 113.

The Computer Checks if the Player Can Win in One Move

112. # Check if the player could win on their next move, and block them.
113. for i in range(1, 10):
114. copy = getBoardCopy(board)

115. if isSpaceFree(copy, 1i):

152 http://inventwithpython.com

116. makeMove(copy, playerlLetter, i)
117. if isWinner(copy, playerLetter):
118. return i

Next, the code will simulate the human player moving on each of the spaces. The code is similar
to the previous loop except the player’s letter is put on the board copy. If the isWinner()
function shows that the player would win with this move, then the computer will return that same
move to block this from happening.

If the human player cannot win in one more move, the for loop will eventually finish and
execution continues to line 121.

Checking the Corner, Center, and Side Spaces (in that Order)

120. # Try to take one of the corners, if they are free.
121. move = chooseRandomMoveFromList(board, [1, 3, 7, 9])
122. if move != None:

123. return move

The call to chooseRandomMoveFromList() with the list of [1, 3, 7, 9] will ensure that it
returns the integer for one of the corner spaces: 1, 3, 7, or 9. If all the corner spaces are taken, the
chooseRandomMoveFromList() function will return None and execution moves on to line 126.

125. # Try to take the center, if it is free.
126. if isSpaceFree(board, 5):
127. return 5

If none of the corners are available, line 127 moves on the center space if it is free. If the center
space isn’t free, the execution moves on to line 130.

129. # Move on one of the sides.
130. return chooseRandomMoveFromList(board, [2, 4, 6, 8])

This code also makes a call to chooseRandomMoveFromList(), except you pass it a list of the
side spaces ([2, 4, 6, 81). This function won’t return None because the side spaces are the only
spaces that can possibly be left. This ends the getComputerMove () function and the Al algorithm.

Checking if the Board is Full

132. def isBoardFull(board):
133. # Return True if every space on the board has been taken. Otherwise
return False.

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 153

134. for i in range(1, 10):

135. if isSpaceFree(board, i):
136. return False

137. return True

The last function is isBoardFul1(). This function returns True if the 10-string list board
argument it was passed hasan 'X' or '0" in every index (except for index 0, which is ignored). If
there’s at least one space in board that is set to a single space ' ' then it will return False.

The for loop will let us check indexes 1 through 9 on the board list. As soon as it finds a free
space on the board (that is, when isSpaceFree(board, i) returns True) the isBoardFul1()
function will return False.

If execution manages to go through every iteration of the loop, then none of the spaces are free.
Line 137 will then execute return True.

The Start of the Game

140. print('Welcome to Tic Tac Toe!")

Line 140 is the first line that isn’t inside of a function, so it is the first line of code that executes
when you run this program. It greets the player.

142. while True:
143. # Reset the board
144. theBoard = [' '] * 10

Line 142’s while loop has True for the condition and will keep looping until the execution
encounters a break statement. Line 144 sets up the main Tic Tac Toe board in a variable named
theBoard. It is a 10-string list, where each string is a single space ' '.

Rather than type out this full list, line 144 uses list replication. It is shorter totype [' '] * 10
then[l l’ 1 l, Al l, Al l,) l’) I,) I,) I’) l’ Al l]'

Deciding the Player’s Mark and Who Goes First

145. playerlLetter, computerLetter = inputPlayerlLetter()

The inputPlayerLetter() function lets the player type in whether they want to be X or O. The
function returns a 2-string list, either ['X", '0'Jor ['0', 'X']. The multiple assignment trick
will set playerLetter to the first item in the returned list and computerLetter to the second.

154 http://inventwithpython.com

146. turn = whoGoesFirst()
147. print('The ' + turn + ' will go first.")
148. gamelIsPlaying = True

The whoGoesFirst() function randomly decides who goes first, and returns either the string
"player’ or the string 'computer' and line 147 tells the player who will go first. The
gameIsPlayer variable keeps track of whether the game is still being played or if someone has
won or tied.

Running the Player’s Turn

150. while gameIsPlaying:

Line 150’s loop will keep going back and forth between the code for the player’s turn and the
computer's turn, as long as gameIsPlaying is set to True.

151. if turn == 'player':

152. # Player’s turn.

153. drawBoard(theBoard)

154. move = getPlayerMove(theBoard)

155. makeMove (theBoard, playerLetter, move)

The turn variable was originally set by the whoGoesFirst() call on line 146. It is set either to
"player’' or 'computer'. If turn equals 'computer’, then line 151’s condition is False and
execution jumps to line 169.

Line 153 calls drawBoard() and passes the theBoard variable to print the Tic Tac Toe board on
the screen. Then the getPTayerMove() function lets the player type in their move (and also
makes sure it is a valid move). The makeMove () function adds the player’s X or O to theBoard.

157. if isWinner(theBoard, playerLetter):

158. drawBoard(theBoard)

159. print('Hooray! You have won the game!")
160. gameIsPlaying = False

Now that the player has made their move, the computer should check if they have won the game
with this move. If the iswinner() function returns True, the if-block’s code displays the winning
board and prints a message telling them they have won.

The gameIsPlaying variable is also set to False so that execution doesn’t continue on to the
computer's turn.

Post questions to http://invpy.com/forum

Chapter 10 - Tic Tac Toe 155

161. else:

162. if isBoardFull(theBoard):

163. drawBoard(theBoard)

164. print('The game is a tie!')
165. break

If the player didn’t win with their last move, maybe their move filled up the entire board and tied
the game. In this else-block, the isBoardFu11() function returns True if there are no more moves
to make. In that case, the if-block starting at line 162 displays the tied board and tell the player a
tie has occurred. The execution breaks out of the while loop and jumps to line 186.

166. else:
167. turn = 'computer'

If the player hasn’t won or tied the game, then line 167 sets the turn variable to ' computer' so
that it will execute the code for the computer’s turn on the next iteration.

Running the Computer’s Turn

If the turn variable wasn’t 'player' for the condition on line 151, then it must be the computer's
turn. The code in this else-block is similar to the code for the player’s turn.

169. else:

170. # Computer’s turn.

171. move = getComputerMove(theBoard, computerLetter)
172. makeMove (theBoard, computerlLetter, move)

174. if isWinner(theBoard, computerLetter):

175. drawBoard(theBoard)

176. print('The computer has beaten you! You lose.')
177. gameIsPlaying = False

178. else:

179. if isBoardFull(theBoard):

180. drawBoard(theBoard)

181. print('The game is a tie!')

182. break

183. else:

184. turn = 'player’

Lines 170 to 184 are almost identical to the code for the player’s turn on lines 152 to 167. The
only difference is this the code uses the computer’s letter and calls getComputerMove().

If the game isn’t won or tied, line 184 sets turn to the player’s turn. There are no more lines of
code inside the while loop, so execution would jump back to the while statement on line 150.

156 http://inventwithpython.com

186. if not playAgain(Q):
187. break

Lines 186 and 187 are located immediately after the while-block started by the whi Te statement
on line 150. gameIsPlaying is set to False when the game has ended, so at this point the game
asks the player if they want to play again.

If playAgain() returns False, then the if statement’s condition is True (because the not
operator reverses the Boolean value) and the break statement executes. That breaks the execution
out of the whiTe loop that was started on line 142. But since there are no more lines of code after
that while-block, the program terminates.

Summary

Creating a program that can play a game comes down to carefully considering all the possible
situations the Al can be in and how it should respond in each of those situations. The Tic Tac Toe
Al is simple because there are not many possible moves in Tic Tac Toe compared to a game like
chess or checkers.

Our Al checks if any possible move can allow itself to win. Otherwise, it checks if it must block
the player’s move. Then the Al simply chooses any available corner space, then the center space,
then the side spaces. This is a simple algorithm for the computer to follow.

The key to implementing our Al is by making copies of the board data and simulating moves on
the copy. That way, the Al code can see if a move results in a win or loss. Then the Al can make
that move on the real board. This type of simulation is effective at predicting what is a good move
or not.

Post questions to http://invpy.com/forum

Chapter 11 - Bagels 157

Chapter 11

BAGELS

Topics Covered In This Chapter:

Augmented Assignment Operators, +=, -=, *=, /=
The random.shuffle() Function

The sort() and join() List Methods

String Interpolation (also called String Formatting)
Conversion Specifier %s

Nested Loops

In this chapter, you’ll learn a few new methods and functions that come with Python. You’ll also
learn about augmented assignment operators and string interpolation. These things don’t let you
do anything you couldn't do before, but they are nice shortcuts to make coding easier.

Bagels is a deduction game you can play with a friend. Your friend thinks up a random 3-digit
number with no repeating digits, and you try to guess what the number is. After each guess, your
friend gives you three types of clues:

o Bagels — None of the three digits you guessed is in the secret number.

o Pico — One of the digits is in the secret number, but your guess has the digit in the wrong
place.

o Fermi— Your guess has a correct digit in the correct place.

You can get multiple clues after each guess. If the secret number is 456 and your guess is 546 the
clues would be “fermi pico pico”. The 6 provides “fermi” and the 5 and 4 provide “pico pico”.

Sample Run of Bagels

I am thinking of a 3-digit number. Try to guess what it is.
Here are some clues:

When I say: That means:
Pico One digit is correct but in the wrong position.
Fermi One digit is correct and in the right position.
Bagels No digit is correct.

I have thought up a number. You have 10 guesses to get it.

Guess #1:

123

158 http://inventwithpython.com

Fermi

Guess #2:
453

Pico

Guess #3:
425

Fermi

Guess #4:
326

Bagels
Guess #5:
439

Bagels
Guess #6:
075

Fermi Fermi
Guess #7:
015

Fermi Pico
Guess #8:
175

You got it!
Do you want to play again? (yes or no)
no

Source Code of Bagels

If you get errors after typing this code in, compare the code you typed to the book’s code with the

bagels.py

1. import random

2. def getSecretNum(numDigits):

3. # Returns a string that is numDigits long, made up of unique random
digits.

4. numbers = 1ist(range(10))

5. random.shuffle(numbers)

6. secretNum = "'

7. for i in range(numDigits):

8. secretNum += str(numbers[i])

9. return secretNum
10.
11. def getClues(guess, secretNum):
12. # Returns a string with the pico, fermi, bagels clues to the user.
13. if guess == secretNum:

Post questions to http://invpy.com/forum

Chapter 11 - Bagels 159

14. return 'You got it!'

15.

16. clue = []

17.

18. for i in range(len(guess)):

19. if guess[i] == secretNum[i]:

20. clue.append('Fermi')

21. elif guess[i] in secretNum:

22. clue.append('Pico')

23. if Ten(clue) == 0:

24, return 'Bagels'

25.

26. clue.sort(Q)

27. return ' '.join(cTue)

28.

29. def isOnlyDigits(num):

30. # Returns True if num is a string made up only of digits. Otherwise
returns False.

31. if num == "'':

32. return False

33.

34. for i in num:

35. if i not in '0 12345678 9'.split(Q:
36. return False

37.

38. return True

39.

40. def playAgain(Q):

41. # This function returns True if the player wants to play again,
otherwise it returns False.

42. print('Do you want to play again? (yes or no)')
43, return input() .Tower().startswith('y')

44,

45. NUMDIGITS = 3

46. MAXGUESS = 10

47 .

48. print('I am thinking of a %s-digit number. Try to guess what it is.' %
(NUMDIGITS))

49. print('Here are some clues:')

50. print('When I say: That means:')

51. print(' Pico One digit is correct but in the wrong position.')
52. print(' Fermi One digit is correct and in the right position.')
53. print(' Bagels No digit is correct.')

54.

55. while True:
56. secretNum = getSecretNum(NUMDIGITS)

160 http://inventwithpython.com

57. print('I have thought up a number. You have %s guesses to get it.' %
(MAXGUESS))

58.

59. numGuesses = 1

60. while numGuesses <= MAXGUESS:

61. guess = "'

62. while Ten(guess) != NUMDIGITS or not isOnlyDigits(guess):
63. print('Guess #%s: ' % (numGuesses))

64. guess = input()

65.

66. clue = getClues(guess, secretNum)

67. print(clue)

68. numGuesses += 1

69.

70. if guess == secretNum:

71. break

72. if numGuesses > MAXGUESS:

73. print('You ran out of guesses. The answer was %s.' %
(secretNum))

74.

75. if not playAgain(Q):

76. break

Designing the Program

The flow chart in Figure 11-1 describes what happens in this game, and in what order they can
happen.

How the Code Works

1. import random

2. def getSecretNum(numDigits):

3. # Returns a string that is numDigits long, made up of unique random
digits.

At the start of the program, import the random module. Then define a function named
getSecretNum(). The function makes a secret number that has only unique digits in it. Instead of
only 3-digit secret numbers, the numD1igits parameter lets the function make a secret number
with any number of digits. For example, you can make a secret number of four or six digits by
passing 4 or 6 for numDigits.

Post questions to http://invpy.com/forum

Chapter 11 - Bagels 161

|STQRT ito
play again.

Generate seCre+
number.

Player has
lost.

See if player
has run out
of guesses.

Player hos
won.

Ge+ player's
quess.

END

Tell player
Clues.

Tncrement
9uess count.

Figure 11-1: Flow chart for the Bagels game.

Shuffling a Unique Set of Digits

4, numbers = 1ist(range(10))
5. random.shuffle(numbers)

Line 4’s Tist(range(10)) always evaluate to [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].It’sjust
easier to type Tist(range(10)). The numbers variable contains a list of all ten digits.

The random. shuffl e Function

The random.shuffle() function randomly changes the order of a list’s items. This function
doesn’t return a value, but rather modifies the list you pass it “in place”. This is similar to the way
the makeMove () function in the Tic Tac Toe chapter modified the list it was passed in place,
rather than return a new list with the change. This is why you do not write code like numbers =
random. shuffle(numbers).

Try experimenting with the random.shuffle() function by entering the following code into the
interactive shell:

>>> import random
>>> spam = list(range(10))
>>> print(spam)

162 http://inventwithpython.com

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> random.shuffle(spam)
>>> print(spam)
[3, 0, 5, 9, 6, 8, 2, 4, 1, 7]

>>> random.shuffle(spam)
>>> print(spam)
[1, 2! 51 9, 4, 71 O, 31 6’ 8]

>>> random.shuffle(spam)
>>> print(spam)
[9l 8’ 3’ 5! 4! 7! l’ 2’ 0’ 6]

You want the secret number in Bagels to have unique digits. The Bagels game is much more fun
if you don’t have duplicate digits in the secret number, such as '244' or '333'. The shuffle()
function will help you do this.

Getting the Secret Number from the Shuffled Digits

secretNum =
for i in range(numDigits):

secretNum += str(numbers[i])
return secretNum

O 00 N O

The secret number will be a string of the first numD1gi ts digits of the shuffled list of integers. For
example, if the shuffled list in numbers is [9, 8, 3, 5, 4, 7, 1, 2, 0, 6] and numDigits
was 3, then you’d want the string returned by getSecretNum() to be '983".

To do this, the secretNum variable starts out as a blank string. The for loop on line 7 iterates
numD1igits number of times. On each iteration through the loop, the integer at index 1 is pulled
from the shuffled list, converted to a string, and concatenated to the end of secretNum.

For example, if numbers refers to the list [9, 8, 3, 5, 4, 7, 1, 2, 0, 6], thenon the first
iteration, numbers[0] (that is, 9) will be passed to str(), which in turn returns '9"' which is
concatenated to the end of secretNum. On the second iteration, the same happens with
numbers[1] (that is, 8) and on the third iteration the same happens with numbers[2] (that is, 3).
The final value of secretNum that is returned is '983".

Notice that secretNum in this function contains a string, not an integer. This may seem odd, but
remember that you cannot concatenate integers. The expression 9 + 8 + 3 evaluates to 20, but
what you wantis '9' + '8"' + '3', which evaluatesto '983".

Post questions to http://invpy.com/forum

Chapter 11 - Bagels 163

Augmented Assignment Operators

The += operator on line 8 is one of the augmented assignment operators. Normally, if you
wanted to add or concatenate a value to a variable, you would use code that looked like this:

spam = 42
spam = spam + 10
eggs = 'Hello '
eggs = eggs + 'world!’

The augmented assignment operators are a shortcut that frees you from retyping the variable
name. The following code does the same thing as the above code:

spam = 42
spam += 10 # Like spam = spam + 10
eggs = 'Hello '
eggs += 'world!' # Like eggs = eggs + 'world!’

There are other augmented assignment operators as well. Try entering the following into the
interactive shell:

>>> spam = 42
>>> spam -= 2
>>> spam
40

>>> spam *
>>> spam
120

>>> spam /= 10
>>> spam

12.0

2
Il
w

Calculating the Clues to Give

11. def getClues(guess, secretNum):

12. # Returns a string with the pico, fermi, bagels clues to the user.
13. if guess == secretNum:
14. return 'You got it!'

The getClues () function will return a string with the fermi, pico, and bagels clues depending on
the guess and secretNum parameters. The most obvious and easiest step is to check if the guess
is the same as the secret number. In that case, line 14 returns 'You got it!'.

164 http://inventwithpython.com

16. clue = []

17.

18. for i in range(len(guess)):

19. if guess[i] == secretNum[i]:
20. clue.append('Fermi')

21. elif guess[i] in secretNum:
22. clue.append('Pico')

If the guess isn’t the same as the secret number, the code must figure out what clues to give the
player. The list in clue will start empty and have 'Fermi' and 'Pico" strings added as needed.

Do this by looping through each possible index in guess and secretNum. The strings in both
variables will be the same length, so the line 18 could have used either Ten(guess) or
Ten(secretNum) and work the same. As the value of i changes from 0 to 1 to 2, and so on, line
19 checks if the first, second, third, etc. letter of guess is the same as the number in the same
index of secretNum. If so, line 20 will add a string ' Fermi ' to clue.

Otherwise, line 21 will check if the number at the 1th position in guess exists anywhere in
secretNum. If so, you know that the number is somewhere in the secret number but not in the
same position. Line 22 will then add 'Pico' to clue.

23. if len(clue) == 0:
24, return 'Bagels'

If the clue list is empty after the loop, then you know that there are no correct digits at all in
guess. In this case, line 24 returns the string 'Bagels" as the only clue.

The sort List Method

26. clue.sort()

Lists have a method named sort () that rearranges the items in the list to be in alphabetical or
numerical order. Try entering the following into the interactive shell:

>>> spam = ['cat', 'dog', 'bat', 'anteater']
>>> spam.sort()
>>> spam

['anteater', 'bat', 'cat', 'dog'l]

>>> spam = [9, 8, 3, 5, 4, 7, 1, 2, 0, 6]
>>> spam.sort()

>>> spam

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Post questions to http://invpy.com/forum

Chapter 11 - Bagels 165

The sort() method doesn’t return a sorted list, but rather sorts the list it is called on “in place”.
This is just like how the reverse() method works.

You would never want to use this line of code: return spam.sort() because that would return
the value None (which is what sort () returns). Instead you would want a separate line
spam.sort() and then the line return spam.

The reason you want to sort the clue list is to get rid of extra information based on the order of
the clues. If clue was ['Pico', 'Fermi', 'Pico'], then that would tell the player that the
center digit of the guess is in the correct position. Since the other two clues are both Pico, the
player would know that all they have to do is swap the first and third digit to get the secret
number.

If the clues are always sorted in alphabetical order, the player can’t be sure which number the
Fermi clue refers. This is what we want for the game.

The joino String Method

27. return '.join(cTlue)

The join() string method returns a list of strings as a single string joined together. The string
that the method is called on (on line 27, this is a single space, ' ') appears between each string in
the list. For an example, enter the following into the interactive shell:

>>> ' '.join(['My"', 'name', 'is', 'Zophie'])
'My name is Zophie'
>>> ', '".join(['Life', 'the Universe', 'and Everything'])

'Life, the Universe, and Everything'

So the string that is returned on line 27 is each string in c1ue combined together with a single
space between each string. The join() string method is sort of like the opposite of the sp1it()
string method. While sp1it () returns a list from a split up string, join() returns a string from a
combined list.

Checking if a String Has Only Numbers

29. def isOnlyDigits(num):

30. # Returns True if num is a string made up only of digits. Otherwise
returns False.
31. if num = "':

32. return False

166 http://inventwithpython.com

The is0nTyDigits() helps determine if the player entered a valid guess. Line 31 checks if num is
the blank string, and if so, returns False.

34. for i in num:

35. if i not in '01 2345678 9'".split(Q:
36. return False

37.

38. return True

The for loop iterates over each character in the string num. The value of i will have a single
character on each iteration. Inside the for-block, the code checks if i doesn’t exist in the list
returnedby '0 1 2 3 4 5 6 7 8 9'.sp1it(). (The return value from sp1it () is equivalent to
['o', '1', '2', '3', '4', 's', 'e6', '7', '8", '9'] butis easier to type.) If it doesn’t,
you know there’s a non-digit character in num. In that case, line 36 returns False.

If execution continues past the for loop, then you know that every character in num is a digit. In
that case, line 38 returns True.

Finding out if the Player Wants to Play Again

40. def playAgain():

41. # This function returns True if the player wants to play again,
otherwise it returns False.

42. print('Do you want to play again? (yes or no)')

43. return input() .Tower().startswith('y')

The playAgain() function is the same one you used in Hangman and Tic Tac Toe. The long
expression on line 43 evaluates to either True or False based on the answer given by the player.

The Start of the Game

45. NUMDIGITS = 3

46. MAXGUESS = 10

47.

48. print('I am thinking of a %s-digit number. Try to guess what it is.' %
(NUMDIGITS))

49. print('Here are some clues:')

50. print('When I say: That means:')

51. print(' Pico One digit is correct but in the wrong position.')
52. print(' Fermi One digit is correct and in the right position.')
53. print(' Bagels No digit is correct.')

Post questions to http://invpy.com/forum

Chapter 11 - Bagels 167

After all of the function definitions, this is the actual start of the program. Instead of using the
integer 3 in our program for the number of answer has, use the constant variable NUMDIGITS. The
same goes for using the constant variable MAXGUESS instead of the integer 10 for the number of
guesses the player gets. Now it will be easy to change the number of guesses or secret number
digits. Just change line 45 or 46 and the rest of the program will still work without any more
changes.

The print () function calls will tell the player the rules of the game and what the Pico, Fermi,
and Bagels clues mean. Line 48's print () call has % (NUMDIGITS) added to the end and %s
inside the string. This is a technique known as string interpolation.

String Interpolation

String interpolation is a coding shortcut. Normally, if you want to use the string values inside
variables in another string, you have to use the + concatenation operator:

>>> name = 'Alice’
>>> event = 'party'
>>> where = 'the pool'

>>> day = 'Saturday'

>>> time = '6:00pm’

>>> print('Hello, ' + name + '. Will you go to the ' + event + ' at ' + where +
' this ' + day + ' at ' + time + '?")

Hello, Alice. Will you go to the party at the pool this Saturday at 6:00pm?

As you can see, it can be hard to type a line that concatenates several strings. Instead, you can use
string interpolation, which lets you put placeholders like %s. These placeholders are called
conversion specifiers. Then put all the variable names at the end. Each %s is replaced with a
variable at the end of the line. For example, the following code does the same thing as the
previous code:

>>> name = 'Alice’
>>> event = 'party'
>>> where = 'the pool'

>>> day = 'Saturday'
>>> time = '6:00pm’'

>>> print('Hello, %s. Will you go to the %s at %s this %s at %s?' % (name,
event, where, day, time))
Hello, Alice. Will you go to the party at the pool this Saturday at 6:00pm?

168 http://inventwithpython.com

String interpolation can make your code much easier to type. The first variable name is used for
the first %s, the second variable with the second %s and so on. You must have the same number of
%s conversion specifiers as you have variables.

Another benefit of using string interpolation instead of string concatenation is interpolation works
with any data type, not just strings. All values are automatically converted to the string data type.
If you concatenated an integer to a string, you’d get this error:

>>> spam = 42
>>> print('Spam == ' + spam)
Traceback (most recent call last):
File "<stdin>", 1ine 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

String concatenation can only combine two strings, but spam is an integer. You would have to
remember to put str(spam) instead of spam. But with string interpolation, this conversion to
strings is done for you. Try entering this into the interactive shell:

>>> spam = 42
>>> print('Spam is %s' % (spam))
Spam 1is 42

String interpolation is also known as string formatting.

Creating the Secret Number

55. while True:

56. secretNum = getSecretNum(NUMDIGITS)

57. print('I have thought up a number. You have %s guesses to get it.' %
(MAXGUESS))

58.

59. numGuesses = 1

60. whiTle numGuesses <= MAXGUESS:

Line 55 is an infinite whi e loop that has a condition of True so it will loop forever until a break
statement is executed. Inside the infinite loop, you get a secret number from the getSecretNum()
function, passing it NUMDIGITS to tell how many digits you want the secret number to have. This
secret number is assigned to secretNum. Remember, the value in secretNum is a string not an
integer.

Line 57 tells the player how many digits is in the secret number by using string interpolation
instead of string concatenation. Line 59 sets variable numGuesses to 1 to mark this is as the first

Post questions to http://invpy.com/forum

Chapter 11 - Bagels 169

guess. Then line 60 has a new while loop that loops as long as numGuesses is less than or equal
to MAXGUESS.

Getting the Player’s Guess

61. guess = "'

62. while Ten(guess) != NUMDIGITS or not isOnlyDigits(guess):
63. print('Guess #%s: ' % (numGuesses))

64. guess = input()

The guess variable will hold the player’s guess returned from input(). The code keeps looping
and asking the player for a guess until the player enters a valid guess. A valid guess has only
digits and the same number of digits as the secret number. This is what the whiTe loop that starts
on line 62 is for.

The guess variable is set to the blank string on line 61 so the while loop’s condition is False the
first time it is checked, ensuring the execution enters the loop.

Getting the Clues for the Player’s Guess

66. clue = getClues(guess, secretNum)
67. print(clue)
68. numGuesses += 1

After execution gets past the while loop that started on line 62, guess contains a valid guess.
Pass this and secretNum to the getClues () function. It returns a string of the clues, which are
displayed to the player on line 67. Line 68 increments numGuesses using the augmented
assignment operator for addition.

Checking if the Player Won or Lost

Notice that this second while loop on line 60 is inside another while loop that started on line 55.
These loops-inside-loops are called nested loops. Any break or continue statements will only
break or continue out of the innermost loop, and not any of the outer loop.

70. if guess == secretNum:

71. break

72. if numGuesses > MAXGUESS:

73. print('You ran out of guesses. The answer was %s.' %

(secretNum))

170 http://inventwithpython.com

If guess is the same value as secretNum, the player has correctly guessed the secret number and
line 71 breaks out of the while loop that was started on line 60.

If not, then execution continues to line 72, where it checks if the player ran out of guesses. If so,
the program tells the player they’ve lost.

At this point, execution jumps back to the while loop on line 60 where it lets the player have
another guess. If the player ran out of guesses (or it broke out of the loop with the break
statement on line 71), then execution would proceed past the loop and to line 75.

Asking the Player to Play Again

75. if not playAgain(Q):
76. break

Line 75 asks the player if they want to play again by calling the playAgain() function. If
playAgain() returns False, break out of the while loop that started on line 55. Since there’s no
more code after this loop, the program terminates.

If playAgain() returned True, then the execution would not execute the break statement and
execution would jump back to line 55. The program generates a new secret number so the player
can play a new game.

Summary

Bagels is a simple game to program but can be difficult to win at. But if you keep playing, you’ll
eventually discover better ways to guess and make use of the clues the game gives you. This is
much like how you’ll get better at programming you more you keep at it.

This chapter introduced a few new functions and methods (random. shuffle(), sort(), and
join()), along with a couple handy shortcuts. An augmented assignment operators involve less
typing when you want to change a variable’s relative value such as in spam = spam + 1, which
can be shortened to spam += 1. String interpolation can make your code much more readable by
placing %s (called a conversion specifier) inside the string instead of using many string
concatenation operations.

The next chapter isn’t about programming directly, but will be necessary for the games we want
to create in the later chapters of this book. We will learn about the math concepts of Cartesian
coordinates and negative numbers. These are used in the Sonar, Reversi, and Dodger games, but
Cartesian coordinates and negative numbers are used in many games. If you already know about
these concepts, give the next chapter a brief read anyway to refresh yourself.

Post questions to http://invpy.com/forum

Chapter 12 - Cartesian Coordinates 171

" Chapter 12
CARTESIAN COORDINATES

Topics Covered In This Chapter:

Cartesian coordinate systems

The X-axis and Y-axis

The Commutative Property of Addition
Absolute values and the abs () function

This chapter doesn’t introduce a new game. Instead it goes over some simple mathematical
concepts you will use in the rest of this book. In 2D games the graphics on the screen can move
left or right and up or down. These two directions make up two-dimensional, or 2D, space.
Games with objects moving around a two-dimensional computer screen need a way to translate a
place on the screen into integers the program can deal with.

This is where the Cartesian coordinate system comes in. The coordinates are numbers for a
specific point on the screen. These numbers can be stored as integers in your program’s variables.

Grids and Cartesian Coordinates

a b ¢ d e £

- NN
4 H H B K
J B 2 B L
< [1 N I
Al 1 1l N
J I N B B
-l H -

il 0 H
a »pb ¢ f g h
X-axis

Figure 12-1: A sample chessboard with a black knight at a, 4 and a white knight at e, 6.

172 http://inventwithpython.com

A common way to refer to specific places on a chessboard is by marking each row and column
with letters and numbers. Figure 12-1 is a chessboard that has each row and each column marked.

A coordinate for a space on the chessboard is a combination of a row and a column. In chess, the
knight piece looks like a horse head. The white knight in Figure 12-1 is located at the point e, 6
and the black knight is located at point a, 4.

This labeled chessboard is a Cartesian coordinate system. By using a row label and column label,
you can give a coordinate that is for one and only one space on the board. If you’ve learned about
Cartesian coordinate systems in math class, you may know that numbers are used for both the
rows and columns. That chessboard would look like Figure 12-2.

Y-axis

Figure 12-2: The same chessboard but with numeric coordinates for both rows and columns.

The numbers going left and right along the columns are part of the X-axis. The numbers going up
and down along the rows are part of the Y-axis. Coordinates are always described with the X-
coordinate first, followed by the Y-coordinate. In Figure 12-2, the white knight is located at the
coordinate 5, 6 and not 6, 5. The black knight is located at the coordinate 1, 4 which is not to be
confused with 4, 1.

Notice that for the black knight to move to the white knight’s position, the black knight must
move up two spaces and to the right by four spaces. But you don’t need to look at the board to
figure this out. If you know the white knight is located at 5, 6 and the black knight is located at 1,
4, then you can use subtraction to figure out this information.

Post questions to http://invpy.com/forum

Chapter 12 - Cartesian Coordinates 173

Subtract the black knight’s X-coordinate and white knight’s X-coordinate: 5 - 1 = 4. The black
knight has to move along the X-axis by four spaces.

Subtract the black knight’s Y-coordinate and white knight’s Y-coordinate: 6 - 4 = 2. The black
knight has to move along the Y-axis by two spaces.

By doing some math with the coordinate numbers, you can figure out the distances between two
coordinates.

Negative Numbers

Cartesian coordinates use negative numbers. Negative numbers are numbers that are smaller than
zero. A minus sign in front of a number shows it is negative. -1 is smaller than 0. And -2 is
smaller than -1. If you think of regular numbers (called positive numbers) as starting from 1 and
increasing, you can think of negative numbers as starting from -1 and decreasing. 0 itself isn’t
positive or negative. In Figure 12-3, you can see the positive humbers increasing to the right and
the negative numbers decreasing to the left on a number line.

N — "
= 1 I T

} t i t T 1 t t
9 -8-76-5-4-3-2-10123456 789
(smaller) (bigger)

-+

Figure 12-3: A number line.

The number line is useful to see subtraction and addition done with negative numbers. The
expression 4 + 3 can be thought of as the white knight starting at position 4 and moving 3 spaces
over to the right (addition means increasing, which is in the right direction).

4+3=7

VAR

t ‘ b =t —
9 8-7-6-5-4-3-2-1012 3456 789
(smaller) (bigger)

Figure 12-4: Moving the white knight to the right adds to the coordinate.

As you can see in Figure 12-4, the white knight ends up at position 7. This makes sense, because
4+3is7.

Subtraction is done by moving the white knight to the left. Subtraction means decreasing, which
is in the left direction. 4 - 6 would be the white knight starting at position 4 and moving 6 spaces
to the left, like in Figure 12-5.

174 http://inventwithpython.com

4-6=-2
Y YY)

t =it = | B — 4
9 8-7-6-5-4-3-2-1012 34526789
(smaller) (bigger)

Figure 12-5: Moving the white knight to the left subtracts from the coordinate.
The white knight ends up at position -2. That means 4 - 6 equals -2.

If you add or subtract a negative number, the white knight would move in the opposite direction.
If you add a negative number, the knight moves to the left. If you subtract a negative number, the
knight moves to the right. The expression -6 - -4 would be equal to -2. The knight starts at -6 and
moves to the right by 4 spaces. Notice that -6 - -4 has the same answer as -6 + 4.

6+4=-2

(smaller) (bigger)

Figure 12-6: Even if the white knight starts at a negative coordinate, moving right still adds to
the coordinate.

Figure 12-7: Putting two number lines together creates a Cartesian coordinate system.

Post questions to http://invpy.com/forum

Chapter 12 - Cartesian Coordinates 175

You can think of the X-axis as a number line. Add another number line going up and down for
the Y-axis. If you put these two number lines together, you have a Cartesian coordinate system
like in Figure 12-7.

Adding a positive humber (or subtracting a negative number) would move the knight up the
number line, and subtracting a positive number (or adding a negative number) would move the
knight down.

The 0, 0 coordinate is called the origin.

Math Tricks

Subtracting and adding negative numbers is easy when you have a number line in front of you. It
can also be easy without a number line too. Here are three tricks to help you add and subtract
negative numbers by yourself.

Trick 1: “A Minus Eats the Plus Sign on its Left”

When you see a minus sign with a plus sign on the left, you can replace the plus sign with a
minus sign. Imagine the minus sign “eating” the plus sign to its left. The answer is still the same,
because adding a negative value is the same as subtracting a positive value. 4 + -2 and 4 - 2 both
evaluate to 2.

4+-2=2

(a minus eats the plus sign on its left)

4-2:=2

Figure 12-8: Trick 1 - Adding a positive and negative number.
Trick 2: “Two Minuses Combine Into a Plus”

When you see the two minus signs next to each other without a number between them, they can
combine into a plus sign. The answer is still the same, because subtracting a negative value is the
same as adding a positive value.

176 http://inventwithpython.com

4--2:=6

(two minuses combine into a plus)

4+2=6

Figure 12-9: Trick 2 - Subtracting a positive and negative number.
Trick 3: The Commutative Property of Addition

You can always swap the numbers in addition. This is the commutative property of addition.
That means that doing a swap like 6 + 4 to 4 + 6 will not change the answer.

If you count the boxes in Figure 12-10, you can see that it doesn’t matter if you swap the numbers
for addition.

6+4=10

OO+ 010 — OTTIITTTT]

4+6=10

O+ M = O]

Figure 12-10: Trick 3 - The commutative property of addition.

Say you are adding a negative number and a positive number, like -6 + 8. Because you are adding
numbers, you can swap the order of the numbers without changing the answer. -6 + 8 is the same
as 8 + -6.

Then when you look at 8 + -6, you see that the minus sign can eat the plus sign to its left, and the
problem becomes 8 - 6 = 2. But this means that -6 + 8 is also 2! You’ve rearranged the problem
to have the same answer, but made it easier for us to solve without using a calculator or computer.

Post questions to http://invpy.com/forum

Chapter 12 - Cartesian Coordinates 177

-6+8=2

(because this is addition, swap the order)

8+-6:=2

(the minus sign eats the plus sign on its left)
Figure 12-11: Using the math tricks together.

Absolute Values and the abso Function

The absolute value of a number is the number without the negative sign in front of it. Therefore,
positive numbers do not change, but negative numbers become positive. For example, the
absolute value of -4 is 4. The absolute value of -7 is 7. The absolute value of 5 (which is positive)
is just 5.

You can figure out the distance between two objects by subtracting their positions and taking the
absolute value of the difference. Imagine that the white knight is at position 4 and the black
knight is at position -2. The distance would be 6, since 4 - -2 is 6, and the absolute value of 6 is 6.

It works no matter what the order of the numbers is. -2 - 4 (that is, negative two minus four) is -6,
and the absolute value of -6 is also 6.

Python’s abs () function returns the absolute value of an integer. Try entering the following into
the interactive shell:

>>> abs(-5)

5

>>> abs(42)
42

>>> abs(-10.5)
10.5

178 http://inventwithpython.com

Coordinate System of a Computer Screen

X increases

ﬁ
0 1919, 0
N

o

’

d

1919, 1079
)

Y increases

Figure 12-12: The Cartesian coordinate system on a computer screen.

It is common that computer screens use a coordinate system that has the origin (0, 0) at the top
left corner of the screen, which increases going down and to the right. This is shown in Figure 12-
12. There are no negative coordinates. Most computer graphics use this coordinate system, and
you will use it in this book’s games.

Summary

Most programming doesn’t require understanding a lot of math. Up until this chapter, we’ve been
getting by on simple addition and multiplication.

Cartesian coordinate systems are needed to describe where in a two-dimensional area a certain
position is. Coordinates have two numbers: the X-coordinate and the Y-coordinate. The X-axis
runs left and right and the Y-axis runs up and down. On a computer screen, origin is in the top-
left corner and the coordinates increase going right and down.

The three tricks you learned in this chapter make it easy to add positive and negative integers.
The first trick is that a minus sign will eat the plus sign on its left. The second trick is that two
minuses next to each other will combine into a plus sign. The third trick is that you can swap the
position of the numbers you are adding.

For the rest of the book, we will use the concepts from this chapter in our games because they
have two-dimensional areas in them. All graphical games require understanding how Cartesian
coordinates work.

Post questions to http://invpy.com/forum

Chapter 13 - Sonar Treasure Hunt 179

Chapter 13

SONAR TREASURE HUNT

Topics Covered In This Chapter:
e Data structures

e The remove() list method

e The isdigit() string method
e The sys.exit() function

The game in this chapter is the first to make use of Cartesian coordinates that you learned about
in Chapter 12. The game also has data structures (which is just a fancy way of saying complex
variables such as those that contain lists of lists.) As the games you program become more
complicated, you’ll need to organize your data in data structures.

In this chapter’s game, the player places sonar devices at various places in the ocean to locate
sunken treasure chests. Sonar is a technology that ships use to locate objects under the sea. The
sonar devices (in this game) will tell the player how far away the closest treasure chest is, but not
in what direction. But by placing multiple sonar devices down, the player can figure out where
the treasure chest is.

There are three chests to collect, but the player has only sixteen sonar devices to use to find them.
Imagine that you could not see the treasure chest in the following picture. Because each sonar
device can only find the distance, not direction, the possible places the treasure could be is
anywhere in a square ring around the sonar device (see Figure 13-1).

Treasure Chest

Sonar Device

Figure 13-1: The sonar device’s square ring touches the (hidden) treasure chest.

180 http://inventwithpython.com

Possible

Treasure
'. “r’ Chest

Sonar Devi ce.

Possible Sonar Device
Treasure
Chest

Figure 13-2: Combining multiple square rings of shows where treasure chests could be.

But multiple sonar devices working together can narrow it to an exact place where the rings
intersect each other. See Figure 13-2. (Normally these rings would be circles, but this game will
use squares to make programming it easier.)

Sample Run of Sonar Treasure Hunt

SONAR!
Would you like to view the instructions? (yes/no)
no
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

14
14
13
14
14
14
14
14
14
13
14
14
13
14
14
14
13
13
14
14
14
14
2
13
13
14
NOoO v WN RO

2
14
14
14
13
2
13
13
14
13
14
1]
13
14
14
14
2
13
14
14
2
14
13
14
14
13
2
13
(o]

1
1}
1§
1
13
1
1}
1§
1
1
1
1
1}
14
l
1§
13
1
1}
14
1§
1§
1§
1
14
l
1§
1}
1§
(o]

Ooo~NOOUVID WN RO
. P PR
13
?
13
1}
13
14
1}
13
13
13
13
?
13
14
?
?
13
1}
?
13
13
14
?
13
1}
?
13
14
14
13
13
?
13

'_\
o
14
14
14
14
13
2
13
13
14
14
14
2
13
14
13
2
13
2
13
2
13
2
13
13
14
2
13
13
=
o

'_\
=
14
14
2
13
14
2
13
2
13
13
13
14
14
]
4
14
13
14
13
4
14
13
2
2
13
14
2
'_l
=

[
N

i ISR UL SUUUL L FUL UL UL FUL VUV SUL I POV I UNUL DUSUL DU UL UL

=
w

13 e o T i T ~—— T

14 “m e S e e e e e T T e T T T ~— ~

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
You have 16 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or type quit)
10 10

'_l
N

Post questions to http://invpy.com/forum

Chapter 13 - Sonar Treasure Hunt 181

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

©OWooNOOUEDA WN RO

[
13

14
[
4
13

14
[
[
13

14

14
[

13
14

13
14

2
[

14
14
[
13

2
[
[

14
14

14
14
13
?
[
2
14
2
[

13
[
[
13
13

13

NOoO v A WNRO

SURE U SV SV VL UL PV PV PV SV POV SUL UL UL UL UL B UL Y 9
i PN L L S SURUL I FUL SUL SUNUL SV SRR SV I FUUUL I FUNUL PUUL SUR I VR I VUL U, |

=
w

13 Tem e T N T s e i S e e

=
N

14 "~ T N ~~T T ~
012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
Treasure detected at a distance of 5 from the sonar device.
You have 15 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or type quit)
15 6
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

14
14
1}
4
4
4
13
13
?
13
13
?
1}
13
13
14
?
13
13
14
14
14
?
2
1}
4
NOoO v WN RO

OWoONOOUUVID WNREO
. PR PR
13
?
13
1}
13
14
?
13
13
13
13
?
13
14
?
?
13
1}
?
13
13
14
?
13
1}
?
13
14
14
13
13
?
13

~ T T e i T T NS i T e T e
~ SUA U SOV PUUUL UL PUUIUL I SUL JUL I SURUUR I PUR DR o e 8
JURR U SV SV UL UL UL UL PV S SRV U SUL SOV SO PO S SOV B 9
10 S e e SURR SV SOV SO UL SURUL DU S ~ 10
11 T i T T T T JURVUVA N NV FUU SO SOV SO ~ ~ 11
12 e i e e T T Y T e T T 12
13 e~ JUVAR VAR VAL U SR PRI e S 13
14 Cemt e T T T aeaas - 14

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
You have 14 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or type quit)
15 10
1 2 3 4 5

182 http://inventwithpython.com

012345678901234567890123456789012345678901234567890123456789

OooNOOuUVI A~ WNREREO
[
13

14
[
13
13

14
[
[
13

13

13
[

13
4

13
4

2
[

14
14
[
13

14
[
[

14
14

14
14
13
2
[
14
14
2
[

?
[
[
2
13

14

NoOoOuvih WN RO

~ T e e i T T T T e T T T
10 SURTULI 0 RPVRI o RPUURIUL Y JURR SV SV SOV U SOV SR O ~ 10
13 “~e o T T s e e~ 13

=
SN

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5

You have found a sunken treasure chest!

You have 13 sonar devices left. 2 treasure chests remaining.

Where do you want to drop the next sonar device? (0-59 0-14) (or type quit)

=
AN

...skipped over for brevity...

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789
IAPUUVLL R SUVUVA UL UL VLR SUL SO IATUUA UL SUUUUA UL D s oo

I TR UL UL FUL VUL BUA UL POV S SV PO S ~ s

OCooNOOUV D WNREO
2
13
2
14
1}
13
2
13
13
13
13
2
o
14
3
o
14
1}
13
14
1}
14
13
13
14
14
1}
2
2
14
13

NoOouvhsWNREO

~ RIS SO FURUIUL B D SUUIUL D VUL UL I UM SUAY o DAY § UVRSUIUR I UL SUUPUL I -
SURE UV SV SV UL UL PV UM o AR SOV SUL UL SUUUL SUL UL SR UL Y 9
10 a0 0 e SURR S SOV SOV UL UL SR S ~ 10
11 S N e S S SURVUIUA S UV SOV SO DU PO ~ ~' 11
12 e i oo e e T e e e T e 12
13 e~ o S S USSR e N~ 13

~ o~ o~ ~ ~ ~ o~ ~N S~~~ o~ ~ ~ ~ ~e~~ ~~ ~

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
We've run out of sonar devices! Now we have to turn the ship around and head
for home with treasure chests still out there! Game over.
The remaining chests were here:

'_\
N
'_l
N

Post questions to http://invpy.com/forum

Chapter 13 - Sonar Treasure Hunt 183

0, 4

Do you want to play again? (yes or no)

no

Source Code of Sonar Treasure Hunt

Below is the source code for the game. Type it into a new file, then save the file as sonar.py and
run it by pressing the F5 key. If you get errors after typing this code in, compare the code you

sonar.py

1. # Sonar
2.
3. dimport random
4. dimport sys
5.
6. def drawBoard(board):
7. # Draw the board data structure.
8.
9. hline = ' ' # initial space for the numbers down the left side of
the board
10. for i in range(l, 6):
11. hline += (" ' * 9) + str(i)
12.
13. # print the numbers across the top
14. printChline)
15. print(’ '+ ('0123456789' * 6))
16. print()
17.
18. # print each of the 15 rows
19. for i in range(15):
20. # single-digit numbers need to be padded with an extra space
21. if i < 10:
22. extraSpace = ' '
23. else:
24. extraSpace = "'
25. print('%s%s %s %s' % (extraSpace, i, getRow(board, i), 1))
26.
27. # print the numbers across the bottom
28. print()
29. print(’ '+ ('0123456789' * 6))
30. printChline)
31.
32.

33. def getRow(board, row):

184 http://inventwithpython.com

34. # Return a string from the board data structure at a certain row.
35. boardRow = "'

36. for i in range(60):

37. boardRow += board[i][row]

38. return boardRow

39.

40. def getNewBoard():

41. # Create a new 60x15 board data structure.

42. board = []

43. for x in range(60): # the main Tist is a Tist of 60 Tists

44, board.append([])

45. for y in range(15): # each list in the main 1list has 15 single-
character strings

46. # use different characters for the ocean to make it more
readable.

47. if random.randint(0, 1) ==

48. board[x] .append('~")

49, else:

50. board[x].append(' ")

51. return board

52.

53. def getRandomChests(numChests):

54. # Create a list of chest data structures (two-item Tists of x, y int
coordinates)

55. chests = []

56. for i in range(numChests):

57. chests.append([random.randint(0, 59), random.randint(0, 14)]1)
58. return chests

59.

60. def isvValidMove(x, y):

61. # Return True if the coordinates are on the board, otherwise False.
62. return x >= 0 and x <= 59 and y >= 0 and y <= 14

63.

64. def makeMove(board, chests, x, y):

65. # Change the board data structure with a sonar device character.
Remove treasure chests

66. # from the chests Tist as they are found. Return False if this 1is an
invalid move.

67. # Otherwise, return the string of the result of this move.

68. if not isValidMove(x, y):

69. return False

70.

71. smallestDistance = 100 # any chest will be closer than 100.

72. for cx, cy in chests:

73. if abs(cx - x) > abs(cy - y):

74. distance = abs(cx - x)

75. else:

Post questions to http://invpy.com/forum

Chapter 13 - Sonar Treasure Hunt 185

76. distance = abs(cy - y)

77.

78. if distance < smallestDistance: # we want the closest treasure
chest.

79. smallestDistance = distance

80.

81. if smallestDistance ==

82. # xy is directly on a treasure chest!

83. chests.remove([x, yl)

84. return 'You have found a sunken treasure chest!'

85. else:

86. if smallestDistance < 10:

87. board[x][y] = str(smallestDistance)

88. return 'Treasure detected at a distance of %s from the sonar
device.' % (smallestDistance)

89. else:

90. board[x][y] = 'O’

91. return 'Sonar did not detect anything. A1l treasure chests out
of range.'

92.

93.

94. def enterPlayerMove():

95. # Let the player type in their move. Return a two-item Tist of int xy
coordinates.

96. print('Where do you want to drop the next sonar device? (0-59 0-14)
(or type quit)')

97. while True:

98. move = input()

99. if move.lower() == 'quit':

100. print('Thanks for playing!')

101. sys.exit(Q)

102.

103. move = move.split()

104. if Ten(move) == 2 and move[0].isdigit() and move[l].isdigit() and
isValidMove(int(move[0]), int(move[l])):

105. return [int(move[0]), int(move[l])]

106. print('Enter a number from 0 to 59, a space, then a number from 0
to 14.")

107.

108.

109. def playAgain(Q):

110. # This function returns True if the player wants to play again,
otherwise it returns False.

111. print('Do you want to play again? (yes or no)')

112. return input().Tower().startswith('y')

113.

114.

186 http://inventwithpython.com

115. def showInstructions():

116. print(''"'Instructions:

117. You are the captain of the Simon, a treasure-hunting ship. Your current
mission

118. 1is to find the three sunken treasure chests that are Turking in the part
of the

119. ocean you are in and collect them.

120.

121. To play, enter the coordinates of the point in the ocean you wish to drop
a

122. sonar device. The sonar can find out how far away the closest chest is to
1t.

123. For example, the d below marks where the device was dropped, and the 2's
124. represent distances of 2 away from the device. The 4's represent

125. distances of 4 away from the device.

126.

127. 444444444

128. 4 4

129. 4 22222 4

130. 4 2 2 4

131. 42d24

132. 4 2 2 4

133. 4 22222 4

134. 4 4

135. 444444444

136. Press enter to continue...''')
137. input(Q)

138.

139. print('''For example, here is a treasure chest (the c) located a

distance of 2 away
140. from the sonar device (the d):

141.

142. 22222
143. C 2
144. 2d?2
145. 2 2
146. 22222
147.

148. The point where the device was dropped will be marked with a 2.

149.

150. The treasure chests don’t move around. Sonar devices can detect treasure
151. chests up to a distance of 9. If all chests are out of range, the point
152. will be marked with O

153.

154. If a device 1is directly dropped on a treasure chest, you have discovered
155. the location of the chest, and it will be collected. The sonar device will
156. remain there.

Post questions to http://invpy.com/forum

Chapter 13 - Sonar Treasure Hunt 187

157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.

When you collect a chest, all sonar devices will update to locate the next
closest sunken treasure chest.
Press enter to continue...'''")

input(Q

print()

print('S ONAR ")
print()
print('Would you 1like to view the instructions? (yes/no)')
if input(Q).lower().startswith('y'):
showInstructions()

while True:
game setup
sonarDevices = 16
theBoard = getNewBoard()
theChests = getRandomChests(3)
drawBoard(theBoard)
previousMoves = []

while sonarDevices > 0:
Start of a turn:

show sonar device/chest status
if sonarDevices > 1: extraSsonar =
else: extraSsonar = "'

if Ten(theChests) > 1: extraSchest = 's'

else: extraSchest = "'

print('You have %s sonar device¥s left. %s treasure chest%s

S

remaining.' % (sonarDevices, extraSsonar, len(theChests), extraSchest))

188.
189.
190.

X, Y = enterPlayerMove()
previousMoves.append([x, y]) # we must track all moves so that

sonar devices can be updated.

191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.

moveResult = makeMove(theBoard, theChests, x, y)
if moveResult == False:
continue
else:
if moveResult == 'You have found a sunken treasure chest!':
update all the sonar devices currently on the map.
for x, y in previousMoves:
makeMove(theBoard, theChests, x, y)
drawBoard(theBoard)
print(moveResult)

188 http://inventwithpython.com

202.

203. if Ten(theChests) == 0:

204 . print('You have found all the sunken treasure chests!
Congratulations and good game!')

205. break

206.

207. sonarDevices -= 1

208.

209. if sonarDevices == 0:

210. print('We\'ve run out of sonar devices! Now we have to turn the
ship around and head')

211. print('for home with treasure chests still out there! Game over.')
212. print(’ The remaining chests were here:')

213. for x, y in theChests:

214. print(’ %s, %s' % (x, y))

215.

216. if not playAgain(Q):

217. sys.exit()

Designing the Program

Before trying to understand the source code, play the game a few times first to understand what is
going on. The Sonar game uses lists of lists and other such complicated variables, called data
structures. Data structures are variables that store arrangements of values to represent something.
For example, in the Tic Tac Toe chapter, a Tic Tac Toe board data structure was a list of strings.
The string represented an X, O, or empty space and the index of the string in the list represented
the space on the board. The Sonar game will have similar data structures for the locations of
treasure chests and sonar devices.

How the Code Works

1
2.
3. dimport random
4. dimport sys

Lines 3 and 4 import modules random and sys. The sys module contains the exit() function,
which causes the program to terminate immediately. This function is used later in the program.

Drawing the Game Board

6. def drawBoard(board):

Post questions to http://invpy.com/forum

Chapter 13 - Sonar Treasure Hunt 189

The Sonar game’s board is an ASCII art ocean with X- and Y-axis coordinates around it. The
back tick (*) and tilde (~) characters are located next to the 1 key on your keyboard will be used
for the ocean waves. It looks like this:

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789
0 e T S TN,
L LT Lo T T L S T
2 0 N e e T e e e e e s S 2
3 LT T T o3
4~ e s e S e e S e e 4
ARG VR oV i ™ i et S
e LT ST T T
S oo e T T
8 e e e St e e ™ i o e 8
g LT T I N T) 9
10 T T T L T ST 10
11~ e ST SR o i i s e 11
D o T T T S
13 ecais T Tt Tt T T
14 o e N e e e e e e e e e e 14
012345678901234567890123456789012345678901234567890123456789

1 2 3 4 5

The drawing in the drawBoard() function has four steps.

e First, create a string variable of the line with 1, 2, 3, 4, and 5 spaced out with wide gaps
(to mark the coordinates for 10, 20, 30, 40, and 50 on the X-axis).

e Second, use that string to display the X-axis coordinates along the top of the screen.

e Third, print each row of the ocean along with the Y-axis coordinates on both sides of the
screen.

e Fourth, print the X-axis again at the bottom. Coordinates on all sides makes it easier to
see coordinates for where to place a sonar device.

Drawing the X-Coordinates Along the Top

7. # Draw the board data structure.

8.

9. hline = ' ' # initial space for the numbers down the left side of
the board

10. for i in range(l, 6):

11.

hline += (" ' * 9) + str(i)

190 http://inventwithpython.com

Look again at the top part of the board in Figure 13-3. It has + plus signs instead of blank spaces
S0 you can count the blank spaces easier:

++++++H+H LA 2T # first line
+++0123456789012345678901234567890123456789 # second line

L o e I o e N N L e L R ¥ N o R} - -
+0 0 # third line

Figure 13-3: The spacing used for printing the top of the game board.

The numbers on the first line which mark the tens position all have nine spaces between them,
and there are thirteen spaces in front of the 1. Lines 9 to 11 create this string with this line and
store it in a variable named h1ine.

13. # print the numbers across the top
14. printChline)

15. print(’ '+ ('0123456789"' * 6))
16. print(Q)

To print the numbers across the top of the sonar board, first print the contents of the h1ine
variable. Then on the next line, print three spaces (so that this row lines up correctly), and then
print the string '012345678901234567890123456789012345678901234567890123456789". But
as a shortcut you can use ('0123456789' * 6), which evaluates to the same string.

Drawing the Rows of the Ocean

18. # print each of the 15 rows

19. for i in range(15):

20. # single-digit numbers need to be padded with an extra space
21. if i < 10:

22. extraSpace = ' '

23. else:

24. extraSpace = "'

25. print('%s%s %s %s' % (extraSpace, i, getRow(board, i), 1))

Lines 19 to 25 print each row of ocean waves, including the numbers down the side to label the
Y-axis. The for loop prints rows 0 through 14, along with the row numbers on either side of the
board.

There’s a small problem. Numbers with only one digit (like 0, 1, 2, and so on) only take up one
space when printed, but numbers with two digits (like 10, 11, and 12) take up two spaces. The
rows won’t line up if the coordinates have different sizes. It will look like this:

Post questions to http://invpy.com/forum

Chapter 13 - Sonar Treasure Hunt 191

8 T T S e e i it i i 8
9 e e e T T T T e e e Y e 9

10 e L T T T LT 10
11~ m e T T T B T U U i |

The solution is easy. Add a space only in front of all the single-digit numbers. Lines 21 to 24 set
the variable extraSpace to either a space or an empty string. The extraSpace variable is always
printed, but only has a space character in it for single-digit row numbers. Otherwise, it is the
empty string. This way, all of the rows will line up when you print them.

The getRow() function takes a row number and returns a string representing that row’s ocean
waves. Its two parameters are the board data structure stored in the board variable and a row
number. Let’s look at this function next.

Drawing the X-Coordinates Along the Bottom

27. # print the numbers across the bottom
28. print(Q

29. print(’ '+ ('0123456789' * 6))

30. printChline)

Lines 27 to 30 are similar to lines 13 to 16. They print the X-axis coordinates at the bottom of the
screen.

Getting the State of a Row in the Ocean

33. def getRow(board, row):

34. # Return a string from the board data structure at a certain row.
35. boardRow = "'

36. for i in range(60):

37. boardRow += board[i][row]

38. return boardRow

While the board parameter is a data structure for the entire ocean’s waves, the getRow() function
creates a string for a single row.

First set boardRow to the blank string. The Y-axis coordinate is passed as the row parameter. The
string is made by concatenating board[0] [row], board[1] [row], board[2] [row], and so on up
to board[59] [row]. This is because the row contains 60 characters, from index 0 to index 59.

The for loop on line 36 iterates over integers 0 to 59. On each iteration, the next character in the
board data structure is copied on to the end of boardRow. By the time the loop is done, boardRow
has the complete row’s ASCII art waves and is returned.

192 http://inventwithpython.com

Creating a New Game Board

40. def getNewBoard():

41. # Create a new 60x15 board data structure.

42. board = []

43. for x in range(60): # the main Tist is a Tist of 60 Tists
44, board.append([])

A new board data structure is needed at the start of each new game. The board data structure is a
list of lists of strings. The first list represents the X coordinate. Since the game’s board is 60
characters across, this first list needs to contain 60 lists. Create a for loop that will append 60
blank lists to it.

45. for y in range(15): # each list in the main Tlist has 15 single-
character strings

46. # use different characters for the ocean to make it more
readable.

47. if random.randint(0, 1) ==

48. board[x].append('~")

49, else:

50. board[x].append(' ")

But board is more than just a list of 60 blank lists. Each of the 60 lists represents an X coordinate
of the game board. There are 15 rows in the board, so each of these 60 lists must have 15
characters in them. Line 45 is another for loop to add 15 single-character strings that represent
the ocean.

The “ocean” will be a bunch of randomly chosen '~' and ' "' strings. If the return value of
random. randint() is 0, add the '~' string. Otherwise add the ' * ' string. This will give the
ocean a random, choppy look to it.

Remember that the board variable is a list of 60 lists, each list having 15 strings. That means to
get the string at coordinate 26, 12, you would access board[26][12], and not board[12][26].
The X coordinate is first, then the Y coordinate.

51. return board

Finally, the function returns the value in the board variable.

Creating the Random Treasure Chests

53. def getRandomChests(numChests):

Post questions to http://invpy.com/forum

Chapter 13 - Sonar Treasure Hunt 193

54. # Create a 1list of chest data structures (two-item lists of x, y 1int
coordinates)

55. chests = []

56. for i in range(numChests):

57. chests.append([random.randint(0, 59), random.randint(0, 14)])

58. return chests

The game also randomly decides where the hidden treasure chests are. The treasure chests are
represented as a list of lists of two integers. These two integers will be the X and Y coordinates of
a single chest.

For example, if the chest data structure was [[2, 2], [2, 4], [10, 0]1], then this would mean
there are three treasure chests, one at 2, 2, another chest at 2, 4, and a third one at 10, O.

The numChests parameter tells the function how many treasure chests to generate. Line 56’s for
loop will iterate numChests number of times, and on each iteration line 57 appends a list of two
random integers. The X coordinate can be anywhere from 0 to 59, and the Y coordinate can be
from anywhere between 0 and 14. The expression [random. randint(0, 59),

random. randint(0, 14)] that is passed to the append method will evaluate to a list value like
[2, 2] or [2, 4] or [10, O]. This list value is appended to chests.

Determining if a Move is Valid

60. def isvValidMove(x, y):
61. # Return True 1if the coordinates are on the board, otherwise False.
62. return x >= 0 and x <= 59 and y >= 0 and y <= 14

When the player types in X and Y coordinates of where they want to drop a sonar device, they
may not type invalid coordinates. The X coordinate must be between 0 and 59 and the Y
coordinate must be between 0 and 14.

The isvalidMove () function uses a simple expression that uses and operators to ensure that each
part of the condition is True. If even one part is False, then the entire expression evaluates to
False. This function returns this Boolean value.

Placing a Move on the Board

64. def makeMove(board, chests, x, y):

65. # Change the board data structure with a sonar device character.
Remove treasure chests
66. # from the chests 1list as they are found. Return False if this is an

invalid move.
67. # Otherwise, return the string of the result of this move.

194 http://inventwithpython.com

68. if not isValidMove(x, y):
69. return False

In the Sonar game, the game board is updated to display a number for each sonar device dropped
to show how far away the closest treasure chest is. So when the player makes a move by giving
the program an X and Y coordinate, the board changes based on the positions of the treasure
chests.

The makeMove () function takes four parameters: the game board data structure, the treasure
chests data structure, and the X and Y coordinates. Line 69 returns False if the X and Y
coordinates if was passed do not exist on the game board. If isvalidMove () returns False, then
makeMove () will itself return False.

Otherwise, makeMove () will return a string value describing what happened in response to the
move:

e If the coordinates land directly on the treasure, makeMove () returns 'You have found a
sunken treasure chest!'.

e |f the coordinates are within a distance of 9 or less, makeMove () returns 'Treasure
detected at a distance of %s from the sonar device.' (where %s is replaced
with the integer distance).

e Otherwise, makeMove () will return 'Sonar did not detect anything. All treasure
chests out of range.'.

71. smallestDistance = 100 # any chest will be closer than 100.

72. for cx, cy 1in chests:

73. if abs(cx - x) > abs(cy - y):

74. distance = abs(cx - x)

75. else:

76. distance = abs(cy - y)

77.

78. if distance < smallestDistance: # we want the closest treasure
chest.

79. smallestDistance = distance

Given the coordinates of where the player wants to drop the sonar device and a list of XY
coordinates for the treasure chests, you’ll need an algorithm to find out which treasure chest is
closest.

Post questions to http://invpy.com/forum

Chapter 13 - Sonar Treasure Hunt 195

An Algorithm for Finding the Closest Treasure Chest

The x and y parameters are integers (say, 3 and 2), and together they represent the location on the
game board where the player guessed. The chests variable will have a value such as [[5, 0],
[0, 2], [4, 211. That value represents the locations of three treasure chests. You can visualize
it as the picture in Figure 13-3. The distances form “rings” around the sonar device located at 3, 2
as in Figure 13-4.

0 1 2 3 4 5
0 =

P

i S|

Wy

Figure 13-3: The treasure chests that [[5, 0], [0, 2], [4, 2]] represents.

g
)

0 1 2 3

() 2)))

)

1
1_7)
13121]11]1] 2
2@ 2 |1 | 2
3131221 L] 4
41312121212]2

(W |

Figure 13-4: The board marked with distances from the 3, 2 position.

But how do you translate this into code for the game? You need a way to represent the square
ring distance as an expression. Notice that the distance from an XY coordinate is always the

196 http://inventwithpython.com

larger of two values: the absolute value of the difference of the two X coordinates and the
absolute value of the difference of the two Y coordinates.

That means you should subtract the sonar device’s X coordinate and a treasure chest’s X
coordinate, and then take the absolute value of this number. Do the same for the sonar device’s Y
coordinate and a treasure chest’s Y coordinate. The larger of these two values is the distance.

For example, consider the sonar’s X and Y coordinates are 3 and 2, like in Figure 13-4. The first
treasure chest’s X and Y coordinates (that is, first in the list [[5, 0], [0, 2], [4, 2]])are5
and 0.

1. For the X coordinates, 3 - 5 evaluates to -2, and the absolute value of -2 is 2.
2. For the Y coordinates, 2 - 1 evaluates to 1, and the absolute value of 1 is 1.

3. Comparing the two absolute values 2 and 1, the larger value is 2, so 2 should be the
distance between the sonar device and the treasure chest at coordinates 5, 1.

We can look at the board in Figure 13-4 and see that this algorithm works, because the treasure
chest at 5, 1 is in the sonar device’s 2nd ring. Let’s quickly compare the other two chests to see if
the distances work out correctly also.

Let’s find the distance from the sonar device at 3, 2 and the treasure chest at 0, 2:
1. abs(3 - 0) evaluates to 3.
2. abs(2 - 2) evaluatesto 0.

3. 3is larger than 0, so the distance from the sonar device at 3, 2 and the treasure chest at 0,
2is 3.

Let’s find the distance from the sonar device at 3, 2 and the last treasure chest at 4, 2:
1. abs(3 - 4) evaluatesto 1.
2. abs(2 - 2) evaluates to 0.
3. 1lislarger than 0, so the distance is 1.

Looking at Figure 13-4 you can see all three distances worked out correctly. It seems this
algorithm works. The distances from the sonar device to the three sunken treasure chests are 2, 3,
and 1. On each guess, you want to know the distance from the sonar device to the closest of the
three treasure chest distances. To do this, use a variable called smallestDistance. Let’s look at
the code again:

71. smallestDis